View clinical trials related to Metastatic Prostate Carcinoma.
Filter by:This phase II trial examines antiandrogen therapy interruptions in patients with hormone-sensitive prostate cancer that has spread to other places in the body (metastatic) responding exceptionally well to androgen receptor-pathway inhibitor therapy. The usual treatment for patients with metastatic prostate cancer is to receive hormonal medications including a medication to decrease testosterone levels in the body and a potent oral hormonal medication to block growth signals from male hormones (like testosterone) in the cancer cells. Patients whose cancer is responding exceptionally well to this therapy may take a break from these medications according to their doctor's guidance. This trial may help doctors determine if stopping treatment can allow for testosterone recovery.
This phase II trial studies how well gallium-68 PSMA-11 PET/CT or PET/MRI works in finding prostate cancer cells that have come back (recurrent) in patients with prostate cancer. Gallium-68 PSMA-11 is a type of radioactive compound, called a radiotracer, which is injected in the vein and can accumulate in tumor cells to generate a signal detected by PET/CT or PET/MRI imaging. This may help researchers in finding recurrent prostate cancer cells in patients with prostate cancer.
This phase II trial studies how well 68Ga-PSMA-11 positron emission tomography (PET)/computed tomography (CT) works in detecting the spread of cancer to the bones (bone metastasis) in patients with prostate cancer and increased PSA after treatment (biochemical recurrence) during androgen deprivation therapy. Diagnostic procedures, such as 68Ga-PSMA-11 PET/CT, may help find and diagnose prostate cancer and find out how far the disease has spread.
This phase I trial studies if positron emission tomography (PET) imaging using 11C-YJH08 can be useful for detecting certain cell receptor expression in tumor cells in patients with cancer that has spread to other parts of the body (metastatic). 11C-YJH08 is a small-molecule radiotracer that binds to receptors on cells (glucocorticoid receptor) so that they show up better on the PET scan. Systemic therapy (including enzalutamide) can cause more glucocorticoid receptors to be produced in tumor cells, which can make the tumor cells resist hormone therapies. If researchers can find a better way to detect whether glucocorticoid receptors are increasing during therapy, it may lead to more successful therapies using glucocorticoid receptor antagonists.
This phase II trial studies the use of 68Ga-PSMA-11 positron emission tomography (PET) in diagnosing patients with prostate cancer that continues to grow despite the surgical removal of the testes or medical intervention to block androgen production (castration resistant), and has spread to other places in the body (metastatic). 68Ga- PSMA-11 is a new imaging agent that may help get more detailed pictures of the tumor. This trial aims to see whether using 68Ga-PSMA-11 PET scans may help doctors learn more about where disease is located in the body.
This trial compares cryoablation combined with stereotactic body radiation therapy to stereotactic body radiation therapy alone to see how well they work in treating patients with pain from cancer that has spread to the bones (bone metastases). Bone is a common site of metastasis in advanced cancer, and bone metastases often result in debilitating cancer-related pain. The current standard of care to treat painful bone metastases is radiation therapy alone. However, many patients do not get adequate pain relief from radiation therapy alone. Another type of therapy that may be used to provide pain relief from bone metastases is cryoablation. Cryoablation is a procedure in which special needles are inserted into the tumor site. These needles grow ice balls at their tips to freeze and kill cancer cells. The goal of this trial is to compare how well cryoablation in combination with radiation therapy works to radiation therapy alone when given to cancer patients to provide pain relief from bone metastases.
This phase II trial studies the effect of cabazitaxel, carboplatin, and cetrelimab followed by niraparib with or without cetrelimab in treating patients with aggressive variant prostate cancer that has spread to other places in the body (metastatic). Chemotherapy drugs, such as cabazitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. PARPs are proteins that help repair DNA mutations. PARP inhibitors, such as niraparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Immunotherapy with monoclonal antibodies, such as cetrelimab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. Giving niraparib with or without cetrelimab, after treatment with cabazitaxel, carboplatin, and cetrelimab, may help control aggressive variant prostate cancer.
This phase II trial studies how well androgen deprivation therapy and apalutamide with or without radiation therapy works for the treatment of prostate cancer that has a rise in the blood level of prostate-specific antigen (PSA) and has come back after treatment with surgery or radiation (biochemically recurrent). Androgens can cause the growth of prostate tumor cells. Apalutamide may help fight prostate cancer by blocking the use of androgens by the tumor cells. Androgen deprivation therapy drugs, leuprolide or degarelix, work to lower the amount of androgen in the body, also preventing the tumor cells from growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving radiation therapy with apalutamide and androgen deprivation therapy may help to control prostate cancer that has come back in only a few (up to 5) spots in the body.
This phase II trial studies if talazoparib works in patients with cancer that has spread to other places in the body (advanced) and has mutation(s) in deoxyribonucleic acid (DNA) damage response genes who have or have not already been treated with another PARP inhibitor. Talazoparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. All patients who take part on this study must have a gene aberration that changes how their tumors are able to repair DNA. This trial may help scientists learn whether some patients might benefit from taking different PARP inhibitors "one after the other" and learn how talazoparib works in treating patients with advanced cancer who have aberration in DNA repair genes.
This phase I trial investigates the side effects of cabozantinib and nivolumab in treating patients with cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and who are undergoing treatment for human immunodeficiency virus (HIV). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib and nivolumab may shrink or stabilize cancer in patients undergoing treatment for HIV.