View clinical trials related to Metastatic Ovarian Carcinoma.
Filter by:This phase I trial investigates the side effects and best dose of abexinostat and palbociclib when given together with fulvestrant in treating patients with breast or gynecologic cancer. Abexinostat may prevent tumor cells from growing and multiplying and may kill tumor cells. Palbociclib may prevent or slow the growth of tumor cells when used with other anti-hormonal therapy. Estrogen can cause the growth of breast and gynecologic tumor cells. Fulvestrant may help fight breast or gynecologic cancer by blocking the use of estrogen by the tumor cells. Giving abexinostat, palbociclib, and fulvestrant may work better in treating patients with breast or gynecologic cancer.
This phase I trial studies the side effects of pressurized intraperitoneal aerosol chemotherapy (PIPAC) in treating patients with ovarian, uterine, appendiceal, stomach (gastric), or colorectal cancer that has spread to the lining of the abdominal cavity (peritoneal carcinomatosis). Chemotherapy drugs, such as cisplatin, doxorubicin, oxaliplatin, leucovorin, fluorouracil, mitomycin, and irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. PIPAC is a minimally invasive procedure that involves the administration of intraperitoneal chemotherapy. The study device consists of a nebulizer (a device that turns liquids into a fine mist), which is connected to a high-pressure injector, and inserted into the abdomen (part of the body that contains the digestive organs) during a laparoscopic procedure (a surgery using small incisions to introduce air and to insert a camera and other instruments in the abdominal cavity for diagnosis and/or to perform routine surgical procedures). Pressurization of the liquid chemotherapy through the study device results in aerosolization (a fine mist or spray) of the chemotherapy intra-abdominally (into the abdomen). Giving chemotherapy through PIPAC may reduce the amount of chemotherapy needed to achieve acceptable drug concentration, and therefore potentially reduces side effects and toxicities.
The goals of this prospective, observational cohort study are to determine the feasibility of implementing paclitaxel therapeutic drug monitoring for cancer patients and explore the relationship between paclitaxel drug exposure and the development of neuropathic symptoms. This trial studies if paclitaxel can be consistently measured in the blood of patients with solid tumors undergoing paclitaxel treatment. Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Nerve damage is one of the most common and severe side effects of paclitaxel. The ability to consistently measure paclitaxel in the blood may allow doctors to control the dose of paclitaxel, so that enough chemotherapy is given to kill the cancer, but the side effect of nerve damage is reduced.
This phase II trial studies how well autologous tumor infiltrating lymphocytes MDA-TIL works in treating patients with ovarian cancer, colorectal cancer, or pancreatic ductal adenocarcinoma that has come back (recurrent) or does not respond to treatment (refractory). Autologous tumor infiltrating lymphocytes MDA-TIL, made by collecting and growing specialized white blood cells (called T-cells) from a patient's tumor, may help to stimulate the immune system in different ways to stop tumor cells from growing.
This phase Ib trial studies the side effects and best dose of nivolumab with or without ipilimumab in treating patients with female reproductive cancer that has come back (recurrent) or is high grade and has spread extensively throughout the peritoneal cavity (metastatic). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This phase I/IIa trial studies the side effects and best dose of gene-modified T cells when given with or without decitabine, and to see how well they work in treating patients with malignancies expressing cancer-testis antigens 1 (NY-ESO-1) gene that have spread to other places in the body (advanced). A T cell is a type of immune cell that can recognize and kill abnormal cells of the body. Placing a modified gene for NY-ESO-1 into the patients' T cells in the laboratory and then giving them back to the patient may help the body build an immune response to kill tumor cells that express NY-ESO-1. Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving gene-modified T cells with or without decitabine works better in treating patients with malignancies expressing NY-ESO-1.
This phase I trial studies the side effects and best dose of gemcitabine hydrochloride and berzosertib when given together with carboplatin in treating patients with ovarian, primary peritoneal, or fallopian tube cancer that has come back (recurrent) and has spread to other places in the body (metastatic). Chemotherapy drugs, such as carboplatin and gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Berzosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving berzosertib with chemotherapy (carboplatin and gemcitabine hydrochloride) may work better in treating patients with ovarian, primary peritoneal, or fallopian tube cancer compared to chemotherapy alone.
This phase I trial studies the side effects and best dose of ziv-aflibercept when given together with pembrolizumab in treating patients with solid tumors that that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ziv-afibercept works by decreasing blood and nutrient supply to the tumor, which may result in shrinking the tumor. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving ziv-aflibercept together with pembrolizumab may be a better treatment for patients with advanced solid tumors.