Metastatic Melanoma Clinical Trial
Official title:
Immune Monitoring During Systemic Therapy of Metastatic Malignant Melanoma
NCT number | NCT04158544 |
Other study ID # | 16-101-0125 |
Secondary ID | |
Status | Recruiting |
Phase | |
First received | |
Last updated | |
Start date | August 1, 2016 |
Est. completion date | July 31, 2021 |
The mean survival time in the advanced tumor stage in the presence of distant metastases in
malignant melanoma was less than 9 months until a few years ago. Intensive research efforts
have led to the development of promising new therapeutic strategies and their clinical
application. These include on the one hand mutation-specific inhibitors of important for cell
division serine-threonine kinase BRAF such as vemurafenib, dabrafenib and encorafenib and
inhibitors of the downstream target protein, the mitogen-activated protein kinase kinase
(MEK), such as trametinib, binimetinib and cobimetinib.
The group of immunotherapeutics is a second new class of drugs, in which great hope for the
treatment of metastatic melanoma is placed. Antibody-mediated blockage of surface molecules
expressed on immune cells, referred to as immune checkpoints, results in activation of the
immune system. As a result, an anti-tumor immune response is triggered, which has led to
considerable therapeutic success in metastatic melanoma. To date, three checkpoint inhibitors
have been approved for the treatment of metastatic melanoma. Ipilimumab is an antibody that
binds cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4); Pembrolizumab and nivolumab cause
immune stimulation by binding the Programmed Death Receptor (PD1).
However, the impact of the therapy on the immune system as a whole is largely unknown. A
comprehensive understanding of these effects is crucial to be able to further develop the
therapy and to evaluate useful combination therapies with other immunomodulatory agents.
Within the framework of this project changes of the immune response under a systemic therapy
of the malignant melanoma are to be characterized. The material for the analysis comes from
blood samples collected during routine patient check-ups.
The aim of the analyzes is to precisely characterize the effects of the different
therapeutics on the function of the immune system. In particular, the study will investigate
whether certain therapeutic agents can weaken or activate the immune system and thus, in
addition to the direct effect on the tumor cells, mediate indirect therapeutic effects via
immune modulation. In the long term, the investigators want to use the knowledge gained to
further improve the already existing therapeutic strategies of malignant melanoma by
additional modulation of the immune system.
Status | Recruiting |
Enrollment | 100 |
Est. completion date | July 31, 2021 |
Est. primary completion date | July 31, 2020 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility |
Inclusion Criteria: - Presence of metastatic melanoma expecting treatment with immune or targeted therapy Exclusion Criteria: - <18 years |
Country | Name | City | State |
---|---|---|---|
Germany | Dept. of Dermatology; Univeristy Hospital Regensburg | Regensburg | Bavaria |
Lead Sponsor | Collaborator |
---|---|
University of Regensburg |
Germany,
Board RE, Ellison G, Orr MC, Kemsley KR, McWalter G, Blockley LY, Dearden SP, Morris C, Ranson M, Cantarini MV, Dive C, Hughes A. Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br J Cancer. 2009 Nov 17;101(10):1724-30. doi: 10.1038/sj.bjc.6605371. Epub 2009 Oct 27. — View Citation
Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O'Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA; BRIM-3 Study Group. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011 Jun 30;364(26):2507-16. doi: 10.1056/NEJMoa1103782. Epub 2011 Jun 5. — View Citation
Frederick DT, Piris A, Cogdill AP, Cooper ZA, Lezcano C, Ferrone CR, Mitra D, Boni A, Newton LP, Liu C, Peng W, Sullivan RJ, Lawrence DP, Hodi FS, Overwijk WW, Lizée G, Murphy GF, Hwu P, Flaherty KT, Fisher DE, Wargo JA. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013 Mar 1;19(5):1225-31. doi: 10.1158/1078-0432.CCR-12-1630. Epub 2013 Jan 10. — View Citation
Merelli B, Massi D, Cattaneo L, Mandalà M. Targeting the PD1/PD-L1 axis in melanoma: biological rationale, clinical challenges and opportunities. Crit Rev Oncol Hematol. 2014 Jan;89(1):140-65. doi: 10.1016/j.critrevonc.2013.08.002. Epub 2013 Aug 28. Review. — View Citation
Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC, Patnaik A, Dronca R, Zarour H, Joseph RW, Boasberg P, Chmielowski B, Mateus C, Postow MA, Gergich K, Elassaiss-Schaap J, Li XN, Iannone R, Ebbinghaus SW, Kang SP, Daud A. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014 Sep 20;384(9948):1109-17. doi: 10.1016/S0140-6736(14)60958-2. Epub 2014 Jul 15. — View Citation
Schilling B, Paschen A. Immunological consequences of selective BRAF inhibitors in malignant melanoma: Neutralization of myeloid-derived suppressor cells. Oncoimmunology. 2013 Aug 1;2(8):e25218. Epub 2013 Jun 10. — View Citation
Schilling B, Sondermann W, Zhao F, Griewank KG, Livingstone E, Sucker A, Zelba H, Weide B, Trefzer U, Wilhelm T, Loquai C, Berking C, Hassel J, Kähler KC, Utikal J, Al Ghazal P, Gutzmer R, Goldinger SM, Zimmer L, Paschen A, Hillen U, Schadendorf D; DeCOG. Differential influence of vemurafenib and dabrafenib on patients' lymphocytes despite similar clinical efficacy in melanoma. Ann Oncol. 2014 Mar;25(3):747-53. doi: 10.1093/annonc/mdt587. Epub 2014 Feb 6. — View Citation
Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Görgens A, Giebel B, Schadendorf D, Paschen A. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int J Cancer. 2013 Oct 1;133(7):1653-63. doi: 10.1002/ijc.28168. Epub 2013 Apr 13. — View Citation
Streitz M, Miloud T, Kapinsky M, Reed MR, Magari R, Geissler EK, Hutchinson JA, Vogt K, Schlickeiser S, Kverneland AH, Meisel C, Volk HD, Sawitzki B. Standardization of whole blood immune phenotype monitoring for clinical trials: panels and methods from the ONE study. Transplant Res. 2013 Oct 25;2(1):17. doi: 10.1186/2047-1440-2-17. — View Citation
Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma RN, Thompson JF, Kefford RF, Hersey P, Scolyer RA. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res. 2012 Mar 1;18(5):1386-94. doi: 10.1158/1078-0432.CCR-11-2479. Epub 2011 Dec 12. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change in frequency of peripheral immune cell populations assessed by immune monitoring through flow cytometry (ONE study FACS panel) | As part of the course of therapy during routine check-up, blood samples are collected and then analyzed by flow cytometry (ONE study panel). Frequency of surface antigens of PBMC are analyzed and the characterized sub-populations are monitored during the follow-up. Thereby, changes in frequency of surface antigens will be assessed compared to baseline (before start of treatment). This allows to determine the individual immunophenotype of a patient. | Before start of treatment, 3 and 6 weeks after start of treatment as well as through study completion, an average of 1 year | |
Primary | Change in activation status of peripheral immune cell populations assessed by immune monitoring through flow cytometry (ONE study FACS panel) | As part of the course of therapy during routine check-up, blood samples are collected and then analyzed by flow cytometry (ONE study panel). Expression level of surface antigens of PBMC are analyzed and the characterized sub-populations are monitored during the follow-up. Thereby, changes in expression level of surface antigens will be assessed compared to baseline (before start of treatment). This allows to determine the individual immunophenotype of a patient. | Before start of treatment, 3 and 6 weeks after start of treatment as well as through study completion, an average of 1 year | |
Secondary | Liver inflammation (ALT) | Screening for liver inflammation (serum ALT U/l) | Before start of treatment, 3 and 6 weeks after start of treatment as well as through study completion, an average of 1 year | |
Secondary | Liver inflammation (AST) | Screening for liver inflammation (serum AST U/l) | Before start of treatment, 3 and 6 weeks after start of treatment as well as through study completion, an average of 1 year |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT02224781 -
Dabrafenib and Trametinib Followed by Ipilimumab and Nivolumab or Ipilimumab and Nivolumab Followed by Dabrafenib and Trametinib in Treating Patients With Stage III-IV BRAFV600 Melanoma
|
Phase 3 | |
Active, not recruiting |
NCT05470283 -
Phase I, Open-Label, Study of Tumor Infiltrating Lymphocytes Engineered With Membrane Bound IL15 Plus Acetazolamide in Adult Patients With Metastatic Melanoma
|
Phase 1 | |
Recruiting |
NCT05388877 -
E6201 and Dabrafenib for the Treatment of Central Nervous System Metastases From BRAF V600 Mutated Metastatic Melanoma
|
Phase 1 | |
Active, not recruiting |
NCT05103891 -
Relative Bioavailability of Binimetinib 3 x 15 mg and 45 mg Formulations
|
Phase 1 | |
Completed |
NCT00414765 -
Aldesleukin in Participants With Metastatic Renal Cell Carcinoma or Metastatic Melanoma
|
Phase 4 | |
Completed |
NCT02857270 -
A Study of LY3214996 Administered Alone or in Combination With Other Agents in Participants With Advanced/Metastatic Cancer
|
Phase 1 | |
Completed |
NCT01621490 -
PH 1 Biomarker Study of Nivolumab and Ipilimumab and Nivolumab in Combination With Ipilimumab in Advanced Melanoma
|
Phase 1 | |
Recruiting |
NCT05779423 -
Cryoablation+Ipilimumab+Nivolumab in Melanoma
|
Phase 2 | |
Active, not recruiting |
NCT04940299 -
Tocilizumab, Ipilimumab, and Nivolumab for the Treatment of Advanced Melanoma, Non-Small Cell Lung Cancer, or Urothelial Carcinoma
|
Phase 2 | |
Active, not recruiting |
NCT02278887 -
Study Comparing TIL to Standard Ipilimumab in Patients With Metastatic Melanoma
|
Phase 3 | |
Active, not recruiting |
NCT02360579 -
Study of Lifileucel (LN-144), Autologous Tumor Infiltrating Lymphocytes, in the Treatment of Patients With Metastatic Melanoma
|
Phase 2 | |
Terminated |
NCT02521870 -
A Trial of Intratumoral Injections of SD-101 in Combination With Pembrolizumab in Patients With Metastatic Melanoma or Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma
|
Phase 1/Phase 2 | |
Completed |
NCT02177110 -
A Translational Systems Medicine Approach to Provide Predictive Capacity for Therapy Response in Advanced or Metastatic Malignant Melanoma
|
||
Withdrawn |
NCT01340729 -
Open-Label Study of TPI 287 for Patients With Metastatic Melanoma
|
Phase 1/Phase 2 | |
Withdrawn |
NCT01416844 -
Study of Immune Responses in Patients With Metastatic Melanoma
|
Phase 2 | |
Terminated |
NCT01468818 -
Immunotherapy Using Tumor Infiltrating Lymphocytes for Patients With Metastatic Melanoma
|
Phase 2 | |
Completed |
NCT00984464 -
Study of REOLYSIN® in Combination With Paclitaxel and Carboplatin in Patients With Metastatic Melanoma
|
Phase 2 | |
Completed |
NCT00631618 -
Clinical Trial of Sutent to Treat Metastatic Melanoma
|
Phase 2 | |
Terminated |
NCT00571116 -
Disulfiram Plus Arsenic Trioxide In Patients With Metastatic Melanoma and at Least One Prior Systemic Therapy
|
Phase 1 | |
Recruiting |
NCT00226473 -
Standard Palliative Care Versus Standard Palliative Care Plus Polychemotherapy in Metastasized Malignant Melanoma
|
Phase 4 |