Clinical Trials Logo

Clinical Trial Summary

Human cancers express tumor antigens that can be targeted by cytolytic T lymphocytes (CTL). These antigens consist of a small peptide, derived from endogenous proteins, that is presented at the cancer cell's surface by an HLA class I molecule. Such antigenic peptides, including MAGE-3.A1 and NA17.A2, have been tested in experimental therapeutic vaccines to elicit CTL responses in cancer patients, mainly with metastatic melanoma. Up to now, only rare tumor responses have been observed.

Tumor resistance to CTL killing is the most likely explanation for the poor effectiveness of cancer vaccines. This resistance is probably acquired by the tumor during its development and selected by its repetitive challenge with spontaneous anti-tumoral immune responses. The precise molecular mechanisms of tumor resistance remain unknown. The observation that tumor-infiltrating lymphocytes (TIL) purified from melanoma metastases can recognize and kill autologous tumor cells in vitro, whilst they seem unable to control tumor growth in vivo, suggests that this resistance is hosted by the tumor environment, rather than being the result of a generalized immune suppression.

The investigators have developed a murine model of cutaneous graft rejection that mimics the situation in melanoma. Female CBA mice do not reject syngeneic male skin grafts, even though they mount a spontaneous CTL response against H-Y, a male specific minor histocompatibility antigen, following grafting. The investigators have tested various experimental procedures aimed at inducing effective graft rejection in these mice. This was obtained with a combination of IFN-α, IL-2, GM-CSF, each administered separately under the skin graft, associated with topical applications of imiquimod. All these agents are available as registered drugs. Based on this murine model of cutaneous allograft rejection, the investigators postulate that local immunomodulation with this combination can trigger an effective tumor rejection process, and induce a more efficient and long-lasting anti-tumoral immune response following peptide vaccination.


Clinical Trial Description

Patients will receive the following treatments:

1. Vaccinations:

The vaccine will be the MAGE-3.A1 and/or the NA17.A2 peptide, matching the patient's HLA type and the gene expression of his tumor. If both antigens are expressed, then the patient will receive both peptides.

2. Local treatment with a combination of immunomodulatory drugs:

This treatment will combine peritumoral injection of IL-2, IFN-α and GM-CSF (6000 IU, 100.000 IU and 300 ng per tumor injected, respectively), as well as topical application of imiquimod (applied during 24h). The peritumoral injections of cytokines will be given on days +2,+3,+4,+7,+8 and +9, and the Aldara® cream will be applied on days +2 and +7 following vaccines 3 and 4. One or 2 cutaneous lesions will be treated, if there are 2 or more such lesions present at day 29 of the treatment, respectively. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01191034
Study type Interventional
Source Cliniques universitaires Saint-Luc- Université Catholique de Louvain
Contact
Status Terminated
Phase Phase 1/Phase 2
Start date August 2010
Completion date August 1, 2012

See also
  Status Clinical Trial Phase
Active, not recruiting NCT02224781 - Dabrafenib and Trametinib Followed by Ipilimumab and Nivolumab or Ipilimumab and Nivolumab Followed by Dabrafenib and Trametinib in Treating Patients With Stage III-IV BRAFV600 Melanoma Phase 3
Active, not recruiting NCT05470283 - Phase I, Open-Label, Study of Tumor Infiltrating Lymphocytes Engineered With Membrane Bound IL15 Plus Acetazolamide in Adult Patients With Metastatic Melanoma Phase 1
Recruiting NCT05388877 - E6201 and Dabrafenib for the Treatment of Central Nervous System Metastases From BRAF V600 Mutated Metastatic Melanoma Phase 1
Active, not recruiting NCT05103891 - Relative Bioavailability of Binimetinib 3 x 15 mg and 45 mg Formulations Phase 1
Completed NCT00414765 - Aldesleukin in Participants With Metastatic Renal Cell Carcinoma or Metastatic Melanoma Phase 4
Completed NCT02857270 - A Study of LY3214996 Administered Alone or in Combination With Other Agents in Participants With Advanced/Metastatic Cancer Phase 1
Completed NCT01621490 - PH 1 Biomarker Study of Nivolumab and Ipilimumab and Nivolumab in Combination With Ipilimumab in Advanced Melanoma Phase 1
Recruiting NCT05779423 - Cryoablation+Ipilimumab+Nivolumab in Melanoma Phase 2
Active, not recruiting NCT04940299 - Tocilizumab, Ipilimumab, and Nivolumab for the Treatment of Advanced Melanoma, Non-Small Cell Lung Cancer, or Urothelial Carcinoma Phase 2
Active, not recruiting NCT02278887 - Study Comparing TIL to Standard Ipilimumab in Patients With Metastatic Melanoma Phase 3
Active, not recruiting NCT02360579 - Study of Lifileucel (LN-144), Autologous Tumor Infiltrating Lymphocytes, in the Treatment of Patients With Metastatic Melanoma Phase 2
Terminated NCT02521870 - A Trial of Intratumoral Injections of SD-101 in Combination With Pembrolizumab in Patients With Metastatic Melanoma or Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma Phase 1/Phase 2
Completed NCT02177110 - A Translational Systems Medicine Approach to Provide Predictive Capacity for Therapy Response in Advanced or Metastatic Malignant Melanoma
Withdrawn NCT01340729 - Open-Label Study of TPI 287 for Patients With Metastatic Melanoma Phase 1/Phase 2
Withdrawn NCT01416844 - Study of Immune Responses in Patients With Metastatic Melanoma Phase 2
Terminated NCT01468818 - Immunotherapy Using Tumor Infiltrating Lymphocytes for Patients With Metastatic Melanoma Phase 2
Completed NCT00984464 - Study of REOLYSIN® in Combination With Paclitaxel and Carboplatin in Patients With Metastatic Melanoma Phase 2
Completed NCT00631618 - Clinical Trial of Sutent to Treat Metastatic Melanoma Phase 2
Terminated NCT00571116 - Disulfiram Plus Arsenic Trioxide In Patients With Metastatic Melanoma and at Least One Prior Systemic Therapy Phase 1
Recruiting NCT00226473 - Standard Palliative Care Versus Standard Palliative Care Plus Polychemotherapy in Metastasized Malignant Melanoma Phase 4