View clinical trials related to Metastatic Melanoma.
Filter by:The purpose of this study is to evaluate the safety and effectiveness of 131I-TM601 in the treatment of adult patients with progressive and/or recurrent malignant melanoma.
Obatoclax Mesylate (GMX1777) is a water-soluble, intravenously-administered pro-drug of GMX1778. GMX1777 is rapidly converted to GMX1778 in vivo. GMX1778 has potent anti-tumor activity against a variety of cell lines and models from different tumor origins.
The purpose of this study is to observe the incidence of nausea with systemic chemotherapy that includes consecutive days (more than one day)of cisplatin medication.
Background: -This study uses an experimental cancer treatment that uses the patient s own lymphocytes (type of white blood cell), which are specially selected and genetically modified to target and destroy their tumor. Objectives: -To test the safety of the treatment and determine if it can cause the patient s tumor to shrink. Eligibility: - Patients greater than 18 years and less than or equal to 66 years of age whose cancer has spread beyond the original site and does not respond to standard treatment. - Patients have tissue type human leukocyte antigen (HLA)-A*0201. - Patients cancer cells have the ESO-1 gene. Design: - Workup: Patients have scans, x-rays, laboratory tests, and other tests as needed. - Patients have leukapheresis to collect cells for laboratory treatment and later reinfusion. For this procedure, whole blood is collected thorough a tube in a vein, the desired cells are extracted from the blood, and the rest of the blood is returned to the patient. - Chemotherapy: Patients have low-dose chemotherapy for 1 week to prepare the immune system to receive the treated lymphocytes. - Cell infusion and aldesleukin (IL-2) treatment: Patients receive the lymphocytes by a 30-minute infusion through a vein. Starting within 24 hours of the infusion, they receive high-dose aldesleukin infusions every 8 hours for up to 5 days (maximum15 doses). - Recovery: Patients rest for 1 to 2 weeks to recover from the effects of chemotherapy and aldesleukin. - Tumor biopsy: Patients may be asked to undergo a biopsy (surgical removal of a small piece of tumor) after treatment to look at the effects of treatment on the immune cells in the tumor. - Follow-up: After treatment is completed, patients return to the clinic once a month for several months for physical examinations, a review of side effects, laboratory tests and scans. They may undergo leukapheresis at some visits to look at the effect of treatment on the immune system and check the viability of the infused cells. Patients then return to the National Institute of Health (NIH) clinic once a year for 5 years and then complete a follow-up questionnaire for another 10 years. - Retreatment: Patients whose tumor shrinks or disappears following treatment and then recurs may receive one additional treatment, using the same regimen of chemotherapy, lymphocyte infusion and IL-2 treatment.
To evaluate the antitumor activity of IPI-504 in patients with metastatic melanoma.
Background: - Melanoma antigen recognized by T-cells (MART)-1 is a protein present in melanoma cells. - An experimental procedure developed for treating patients with melanoma uses the anti-MART-1 F5 gene and a type of virus to make special cells called anti-MART-1 F5 cells that are designed to destroy the patient's tumor. These cells are created in the laboratory using the patient's own tumor cells or blood cells. - The treatment procedure also uses a vaccine called plaque purified canarypox vector (ALVAC) MART-1, made from a virus that ordinarily infects canaries and is modified to carry a copy of the MART-1 gene. The virus cannot reproduce in mammals, so it cannot cause disease in humans. When the vaccine is injected into a patient, it stimulates cells in the immune system that may increase the efficiency of the anti-MART-1 F5 cells. Objectives: -To evaluate the safety and effectiveness of anti-MART-1 F5 and the ALVAC vaccine in treating patients with advanced melanoma. Eligibility: -Patients 18 years of age with metastatic melanoma for whom standard treatments have not been effective. Design: - Patients undergo scans, x-rays and other tests and leukapheresis to obtain white cells for laboratory treatment. - Patients have 7 days of chemotherapy to prepare the immune system for receiving the anti-MART-1 F5. - Patients receive the ALVAC vaccine, anti-MART-1 F5 cells and interleukin-2 (IL-2) (an approved treatment for advanced melanoma). The anti-MART-1 F5 cells are given as an infusion through a vein. The vaccine is given as injections just before the infusion of anti-MART-1 F5 cells and again 2 weeks later. IL-2 is given as a 15-minute infusion every 8 hours for up to 5 days after the cell infusion for a maximum of 15 doses. - After hospital discharge, patients return to the clinic for periodic follow-up with a physical examination, review of treatment side effects, laboratory tests and scans every 1 to 6 months.
Background: - gp100 is a protein that is often found in melanoma tumors. - An experimental procedure developed for treating patients with melanoma uses anti-gp100 cells designed to destroy their tumors. The anti-gp100 cells are created in the laboratory using the patient's own tumor cells or blood cells. - The treatment procedure also uses a vaccine called plaque purified canarypox vector (ALVAC) gp100, made from a virus that ordinarily infects canaries and is modified to carry a copy of the gp100 gene. The virus cannot reproduce in mammals, so it cannot cause disease in humans. When the vaccine is injected into a patient, it stimulates cells in the immune system that may increase the efficiency of the anti gp 100 cells. Objectives: -To evaluate the safety and effectiveness of anti-gp100 cells and the ALVAC gp100 vaccine in treating patients with advanced melanoma. Eligibility: -Patients with metastatic melanoma for whom standard treatments have not been effective. Design: - Patients undergo scans, x-rays and other tests and leukapheresis to obtain white cells for laboratory treatment. - Patients have 7 days of chemotherapy to prepare the immune system for receiving the gp100 cells. - Patients receive the ALVAC vaccine, anti-gp100 cells and interleukin-2 (IL-2) (an approved treatment for advanced melanoma). The anti gp100 cells are given as an infusion through a vein. The vaccine is given as injections just before the infusion of gp100 cells and again 2 weeks later. IL-2 is given as a 15-minute infusion every 8 hours for up to 5 days after the cell infusion for a maximum of 15 doses. - After hospital discharge, patients return to the clinic for periodic follow-up with a physical examination, review of treatment side effects, laboratory tests and scans every 1 to 6 months.
This phase I trial is studying the side effects and best dose of arsenic trioxide when given together with disulfiram in treating patients with metastatic and progressive melanoma. Drugs used in chemotherapy, such as disulfiram and arsenic trioxide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells.
The purpose of this study is to determine if the combination of everolimus and imatinib will slow the growth of or cause a reduction in the size of the cancer, and to determine the side effects of the combination in patients with melanoma. Each of the drugs in this combination, if used alone, would not be expected to have an effect against the cancer. However, when used together, there is a possibility that they could work together to damage the cancer cells, or to block the formation or function of the blood vessels that feed the cancer, either of which could result in slowing the growth of or shrinking the cancer. Both drugs work by blocking signals that are sent from outside of a cell to the inside of the cell that direct the cell to make certain substances to keep the cell alive. Cancer cells or blood vessels that feed cancer cells may be more sensitive to drugs that block these signals.