Clinical Trials Logo

Metastatic Gastric Carcinoma clinical trials

View clinical trials related to Metastatic Gastric Carcinoma.

Filter by:

NCT ID: NCT06364410 Not yet recruiting - Clinical trials for Metastatic Malignant Solid Neoplasm

Testing the Combination of the Anticancer Drugs Trastuzumab Deruxtecan (DS-8201a) and Azenosertib (ZN-c3) in Patients With Stomach or Other Solid Tumors

Start date: August 30, 2024
Phase: Phase 1
Study type: Interventional

This phase I trial tests the safety, side effects, and best dose of azenosertib in combination with trastuzumab deruxtecan in treating patients with HER2-positive and cyclin E amplified gastric or gastroesophageal junction cancer and other HER2-positive solid tumors that have spread to nearby tissue or lymph nodes (locally advanced), that have spread from where it first started (primary site) to other places in the body (metastatic), or that cannot be removed by surgery (unresectable). Azenosertib is in a class of medications called kinase inhibitors. It inhibits a protein called Wee1. Inhibition of the Wee1 protein can make tumor cells more vulnerable to chemotherapy drugs, leading to tumor cell death. Trastuzumab deruxtecan is in a class of medications called antibody-drug conjugates. It is composed of a monoclonal antibody, called trastuzumab, linked to a chemotherapy drug, called deruxtecan. Trastuzumab attaches to HER2 positive cancer cells in a targeted way and delivers deruxtecan to kill them. Giving azenosertib in combination with trastuzumab deruxtecan may be safe, tolerable, and/or more effective in treating patients with locally advanced, metastatic, or unresectable HER2-positive gastric, gastroesophageal junction, or other solid tumors, compared to just trastuzumab deruxtecan alone.

NCT ID: NCT06264921 Recruiting - Ovarian Cancer Clinical Trials

A Study With NKT3447 for Adults With Advanced/Metastatic Solid Tumors

Start date: February 23, 2024
Phase: Phase 1
Study type: Interventional

The goal of the Dose Escalation phase of the study is to evaluate the safety, tolerability, and pharmacokinetics (PK) to determine the maximum tolerated dose (MTD) and/or preliminary recommended dose for expansion (RDE) of NKT3447 in adults with advanced or metastatic solid tumors. The goal of the Expansion phase of the study is to evaluate the safety, tolerability, pharmacokinetics (PK), and the preliminary antitumor activity of NKT3447 in adult subjects with cyclin E1 (CCNE1) amplified ovarian cancer at the RDEs selected in Dose Escalation and to determine the preliminary recommended phase 2 dose (RP2D).

NCT ID: NCT06251973 Recruiting - Clinical trials for Metastatic Gastric Cancer

A Study of agenT-797 in Combination With Botensilimab, Balstilimab, Ramucirumab, and Paclitaxel for People With Esophageal, Gastric, or Gastro-esophageal Junction Cancer

Start date: February 1, 2024
Phase: Phase 2
Study type: Interventional

Participants will receive study treatment with agenT-797, botensilimab, balstilimab, ramucirumab, and paclitaxel. When participants start each agent will depend on how their disease is affecting them.

NCT ID: NCT05802056 Recruiting - Clinical trials for Gastric Adenocarcinoma

Aldesleukin With Nivolumab and Standard Chemotherapy for Treatment of Gastric Cancer With Peritoneal Metastasis

Start date: November 29, 2023
Phase: Phase 1
Study type: Interventional

This phase Ib trial test effects of aldesleukin in combination with nivolumab and standard chemotherapy in treating patients with gastric cancer that has spread to the tissue lining of the abdomen (peritoneal metastasis). Aldesleukin is similar to a protein that naturally exists in the body that stimulates the immune system to fight infections. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as leucovorin calcium, fluorouracil, and oxaliplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving aldesleukin in combination with nivolumab and standard chemotherapy may work better in treating patients with gastric cancer with peritoneal metastasis.

NCT ID: NCT05038254 Recruiting - Clinical trials for Stage IV Pancreatic Cancer AJCC v8

Enhanced Outpatient Symptom Management to Reduce Acute Care Visits Due to Chemotherapy-Related Adverse Events

Start date: May 12, 2021
Phase: N/A
Study type: Interventional

This clinical trial studies if enhanced outpatient symptom management with telemedicine and remote monitoring can help reduce acute care visit due to chemotherapy-related adverse events. Receiving telemedicine and remote monitoring may help patients have better outcomes (such as fewer avoidable emergency room visits and hospitalizations, better quality of life, fewer symptoms, and fewer treatment delays) than patients who receive usual care.

NCT ID: NCT04550494 Recruiting - Clinical trials for Metastatic Malignant Solid Neoplasm

Measuring the Effects of Talazoparib in Patients With Advanced Cancer and DNA Repair Variations

Start date: April 26, 2021
Phase: Phase 2
Study type: Interventional

This phase II trial studies if talazoparib works in patients with cancer that has spread to other places in the body (advanced) and has mutation(s) in deoxyribonucleic acid (DNA) damage response genes who have or have not already been treated with another PARP inhibitor. Talazoparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. All patients who take part on this study must have a gene aberration that changes how their tumors are able to repair DNA. This trial may help scientists learn whether some patients might benefit from taking different PARP inhibitors "one after the other" and learn how talazoparib works in treating patients with advanced cancer who have aberration in DNA repair genes.

NCT ID: NCT04535401 Active, not recruiting - Clinical trials for Stage IV Colorectal Cancer AJCC v8

Testing the Addition of an Anticancer Drug, BAY 1895344, to the Usual Chemotherapy With FOLFIRI in Advanced or Metastatic Cancers of the Stomach and Intestines

Start date: August 13, 2021
Phase: Phase 1
Study type: Interventional

This phase I trial investigates the best dose, possible benefits and/or side effects of BAY 1895344 in combination with FOLFIRI in treating patients with stomach or intestinal cancer that that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or has spread from where it first started (primary site) to other places in the body (metastatic). BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as irinotecan, fluorouracil, and leucovorin, (called FOLFIRI in short) work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BAY 1895344 in combination with FOLFIRI may help shrink advanced or metastatic stomach and/or intestinal cancer.

NCT ID: NCT04329494 Recruiting - Clinical trials for Metastatic Malignant Solid Neoplasm

PIPAC for the Treatment of Peritoneal Carcinomatosis in Patients With Ovarian, Uterine, Appendiceal, Colorectal, or Gastric Cancer

Start date: August 21, 2020
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects of pressurized intraperitoneal aerosol chemotherapy (PIPAC) in treating patients with ovarian, uterine, appendiceal, stomach (gastric), or colorectal cancer that has spread to the lining of the abdominal cavity (peritoneal carcinomatosis). Chemotherapy drugs, such as cisplatin, doxorubicin, oxaliplatin, leucovorin, fluorouracil, mitomycin, and irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. PIPAC is a minimally invasive procedure that involves the administration of intraperitoneal chemotherapy. The study device consists of a nebulizer (a device that turns liquids into a fine mist), which is connected to a high-pressure injector, and inserted into the abdomen (part of the body that contains the digestive organs) during a laparoscopic procedure (a surgery using small incisions to introduce air and to insert a camera and other instruments in the abdominal cavity for diagnosis and/or to perform routine surgical procedures). Pressurization of the liquid chemotherapy through the study device results in aerosolization (a fine mist or spray) of the chemotherapy intra-abdominally (into the abdomen). Giving chemotherapy through PIPAC may reduce the amount of chemotherapy needed to achieve acceptable drug concentration, and therefore potentially reduces side effects and toxicities.

NCT ID: NCT04221893 Recruiting - Clinical trials for Stage IV Colorectal Cancer AJCC v8

Radiation Therapy for the Treatment of Metastatic Gastrointestinal Cancers

Start date: August 7, 2020
Phase: N/A
Study type: Interventional

This phase II trial studies how well radiation therapy works for the treatment of gastrointestinal cancer that are spreading to other places in the body (metastatic). Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. This trial is being done to determine if giving radiation therapy to patients who are being treated with immunotherapy and whose cancers are progressing (getting worse) can slow or stop the growth of their cancers. It may also help researchers determine if giving radiation therapy to one tumor can stimulate the immune system to attack other tumors in the body that are not targeted by the radiation therapy.

NCT ID: NCT03823144 Completed - Solid Tumor, Adult Clinical Trials

Intravital Microscopy in Human Solid Tumors

Start date: February 28, 2019
Phase: N/A
Study type: Interventional

This study will investigate the tumor-associated vasculature of patients with solid tumors. The investigators will use a technology known as intravital microscopy (IVM) in order to visualize in real-time the vessels associated with solid tumors. The IVM observations may determine if an individual patient's tumor vessels would be amenable to receiving systemic therapy, based on the functionality of the vessels.