View clinical trials related to Metastatic Breast Carcinoma.
Filter by:This phase I/II trial studies the side effect and best dose of neratinib and to see how well it works with paclitaxel and with or without pertuzumab and trastuzumab before combination chemotherapy in treating patients with breast cancer that has spread to other places in the body (metastatic). Neratinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with pertuzumab and trastuzumab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as paclitaxel, doxorubicin, and cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving neratinib, pertuzumab, trastuzumab, paclitaxel and combination chemotherapy may work better in treating patients with breast cancer.
This is a multicenter, open labeled, phase 2 clinical trial, where patients are stratified to one of two treatment groups based on upfront TP53 mutation status; i.e. TP53 mutated vs. TP53 wt disease, and treated with dose-dense cyclphosphamide. Furthermore, patients included are stratified based on tumor stage; i.e. locally advanced breast cancer (M0 disease) or metastatic breast cancer (M1 disease). All participating cancer centers will prospectively include patients with breast cancer fulfilling the inclusion criteria. If patients do not respond to the experimental treatment as outlined in the protocol, treatment with dose-dense cyclophosphamide will be terminated, and further cancer treatment will continue at the treating oncologist's discretion. The response data for all patients who have received at least one chemotherapy course will be included in the final efficacy analysis. Tumor tissue, blood samples and radiology data will be collected before therapy starts, if therapy needs to be changed, and for patients with locally advanced breast cancer: at surgery. Response data will be evaluated closely during treatment, with clinical assessment of tumor size every two weeks for patients with locally advanced breast cancer and by radiology every eight weeks for patients with metastatic breast cancer. Evaluation of side effects/tolerance will be performed at every clinical visit, i.e. every two weeks for all patients included in the p53 trial.
This randomized phase II trial studies how well olaparib with or without atezolizumab work in treating patients with non-HER2-positive breast cancer that has spread to nearby tissue or lymph nodes (locally advanced), that cannot be removed by surgery (unresectable), or that has spread from where it first started (primary site) to other places in the body (metastatic). Olaparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. It is not known whether giving olaparib with or without atezolizumab will work better in patients with non-HER2-positive breast cancer.
This phase II trial studies how well pembrolizumab works when given together with endocrine therapy and palbociclib in treating postmenopausal patients with newly diagnosed stage IV estrogen receptor positive breast cancer that has spread to other parts of the body (metastatic). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Estrogen can cause the growth of breast cancer cells. Fulvestrant blocks the use of estrogen by the tumor cells. Letrozole lowers the amount of estrogen made by the body. This may help stop the growth of tumor cells that need estrogen to grow. Palbociclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab, palbociclib, and letrozole or fulvestrant may be an effective treatment for patients with stage IV estrogen receptor positive breast cancer.
This randomized phase II trial studies how well cisplatin works with or without veliparib in treating patients with triple-negative breast cancer and/or BRCA mutation-associated breast cancer that has come back (recurrent) or has or has not spread to the brain (brain metastases). Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. PARPs are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. It is not yet known if cisplatin is more effective with or without veliparib in treating patients with triple-negative and/or BRCA mutation-associated breast cancer.
This phase Ib trial studies the side effects and best dose onalespib when given together with paclitaxel in treating patients with triple negative breast cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment (advanced). Onalespib works by blocking proper processing of proteins that are important for cancer growth. This results in inability of these proteins to work properly. Paclitaxel kills breast cancer cells by interfering with their ability to divide. Giving onalespib together with paclitaxel may be better than giving either one alone in treating patients with breast cancer.
This randomized phase II/III trial studies how well standard of care therapy with stereotactic radiosurgery and/or surgery works and compares it to standard of care therapy alone in treating patients with breast cancer that has spread to one or two locations in the body (limited metastatic) that are previously untreated. Standard of care therapy comprising chemotherapy, hormonal therapy, biological therapy, and others may help stop the spread of tumor cells. Radiation therapy and/or surgery is usually only given with standard of care therapy to relieve pain; however, in patients with limited metastatic breast cancer, stereotactic radiosurgery, also known as stereotactic body radiation therapy, may be able to send x-rays directly to the tumor and cause less damage to normal tissue and surgery may be able to effectively remove the metastatic tumor cells. It is not yet known whether standard of care therapy is more effective with stereotactic radiosurgery and/or surgery in treating limited metastatic breast cancer.
This randomized phase III trial studies exemestane and entinostat to see how well they work compared to exemestane alone in treating patients with hormone receptor-positive breast cancer that has spread to nearby tissue or lymph nodes (locally advanced) or another place in the body (metastatic). Estrogen can cause the growth of breast cancer cells. Endocrine therapy using exemestane may fight breast cancer by lowering the amount of estrogen the body makes. Entinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether exemestane is more effective with or without entinostat in treating breast cancer.
This phase II trial studies the side effects of nab-paclitaxel in treating older patients with breast cancer that has spread from where it started to nearby tissue or lymph nodes (locally advanced) or to other places in the body (metastatic). Drugs used in chemotherapy, such as nab-paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase I trial studies the side effects and best dose of cyclophosphamide and veliparib when given together in treating patients with breast cancer that has spread from where it started to nearby tissue or lymph nodes or to other places in the body. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving cyclophosphamide together with veliparib may work better in treating breast cancer.