View clinical trials related to Metabolism, Inborn Errors.
Filter by:Thiotepa is a chemotherapy drug used extensively in bone marrow transplantation. Thiotepa is a prodrug that undergoes metabolic conversion in the liver by CYP2B6 and CYP3A4 to its primary active metabolite, triethylene phosphoramide (TEPA). The goal of this study is to determine what causes some children to have different drug concentrations of thiotepa and TEPA in their bodies and if drug levels are related to whether or not a child experiences severe side-effects during their bone marrow transplant. The hypothesis is that certain clinical and genetic factors cause changes in thiotepa and TEPA drug levels in pediatric bone marrow transplant patients and that high levels may cause severe side-effects.
Melphalan is a chemotherapy drug used extensively in bone marrow transplantation. The goal of this study is to determine what causes some children to have different drug concentrations of melphalan in their bodies and if drug levels are related to whether or not a child experiences severe side-effects during their bone marrow transplant. The hypothesis is that certain clinical and individual factors cause changes in melphalan drug levels in pediatric bone marrow transplant patients and that high levels may cause severe side-effects.
Fludarabine and clofarabine are chemotherapy drugs used extensively in bone marrow transplantation. The goal of this study is to determine what causes some children to have different drug concentrations of clofarabine and fludarabine in their bodies and if drug levels are related to whether or not a child experiences severe side-effects during their bone marrow transplant. The hypothesis is that clinical and individual factors cause changes in clofarabine and fludarabine drug levels in pediatric bone marrow transplant patients and that high levels may cause severe side-effects.
This is a retrospective study aimed at establishing a database of the current health of adult patients with IEM in the French-speaking part of Switzerland. .
To evaluate the acceptability, tolerance and effect on metabolic control of PKU Explore, a renovated Phe free protein substitute for the dietary management of PKU in children from 6 months to 5 years.
To evaluate the acceptability, tolerance and effect on metabolic control of PKU Start, a new Phe free protein substitute for the dietary management of PKU in infants from birth.
Background: High fructose intake increases blood lactate, triglyceride and uric acid concentrations. Uric acid may contribute to insulin resistance and dyslipidemia in the general population. In patients with hereditary fructose intolerance fructose consumption is associated with acute hypoglycemia, renal tubular acidosis, and hyperuricemia. Objective: We investigated whether asymptomatic carriers for hereditary fructose intolerance (HFI) would have a higher sensitivity to adverse effects of fructose than the general population. Design: Eight subjects heterozygous for HFI (hHFI; 4 males, 4 females) and eight controls received for 7 days a low fructose diet and on the eighth day ingested a test meal calculated to provide 25% of basal energy requirement containing labeled fructose (13C fructose 0.35 g/kg), protein (0.21 g/kg) and lipid (0.22 g/kg). Total fructose oxidation, total endogenous glucose production (by 6,6-2H2-glucose dilution), carbohydrate and lipid oxidation, lipids, uric acid, lactate, creatinine, urea and amino acids were monitored for 6 hours.
The NC NEXUS research study is exploring the utility of next generation sequencing in newborn screening and parental decision making. The National Institutes of Health (NICHD and NHGRI) are co-funding this study under a single U-19.
This randomized controlled trial will evaluate whether the use of pharmacogenetic testing through a Medication Therapy Management (MTM) program has a beneficial impact on drug therapy problems. More specifically, cytochrome DNA testing, which provides information with regards to participant specific metabolism of medications, will be used in the evaluation of participant medication regimens. The overall aim of the project is to evaluate if the addition of genetic CYP testing to a standardized MTM Program provides increased clinical value. To answer this question, the investigators will look at the drug therapy problems (DTPs) identified by the genetic test compared to those DTPs discovered without the test.
The aim of the trial is to describe the safety and efficacy of intravenous (i.v.) Treosulfan compared to the conventional (myeloablative) dose of i.v. Busulfan, each administered as part of a standardised Fludarabine-containing conditioning regimen and to contribute to a PK model which permits - in conjunction with data comparing Treosulfan and Busulfan in adults with malignant diseases - to extend the use of Treosulfan in the paediatric population by extrapolating efficacy.