View clinical trials related to Medulloblastoma.
Filter by:This phase I trial is studying the side effects and best dose of GDC-0449 in treating young patients with medulloblastoma that is recurrent or did not respond to previous treatment. GDC-0449 may be effective in treating young patients with medulloblastoma.
The purpose of this study is to improve overall survival while maintaining a good quality of life in pediatric patients with refractory or recurrent brain tumors (medulloblastomas, supratentorial PNETs, ependymomas WHO grade II and III). Response to different chemotherapy options (intravenous versus oral chemotherapy, intraventricular chemotherapy) as part of a multimodal therapy will be assessed. Progression-free, overall survival and toxicity will be evaluated additionally.
RATIONALE: Sodium thiosulfate may reduce or prevent hearing loss in young patients receiving cisplatin for cancer. It is not yet known whether sodium thiosulfate is more effective than no additional treatment in preventing hearing loss. PURPOSE: This randomized phase III trial is studying sodium thiosulfate to see how well it works in preventing hearing loss in young patients receiving cisplatin for newly diagnosed germ cell tumor, hepatoblastoma, medulloblastoma, neuroblastoma, osteosarcoma, or other malignancy.
The purpose of this study is to determine whether nifurtimox in combination with cyclophosphamide and topotecan are effective in the treatment of relapsed or refractory neuroblastoma and medulloblastoma.
To determine the response rate of pemetrexed given every 21 days for the treatment of children with relapsed or refractory osteosarcoma, Ewing's sarcoma/peripheral primitive neuroectodermal tumors (PNET), rhabdomyosarcoma, neuroblastoma, ependymoma, medulloblastoma/supratentorial PNET or non-brain stem high-grade glioma.
These are Phase 2 single-arm studies of gemcitabine in combination with oxaliplatin in refractory or relapsing pediatric solid tumors.
This study will assess the rate of objective confirmed tumor response of irinotecan in combination with temozolomide in children with recurrent or refractory medulloblastoma and in children with newly diagnosed high-grade glioma.
This phase II trial is studying how well giving bevacizumab together with irinotecan works in treating young patients with recurrent, progressive, or refractory glioma, medulloblastoma, ependymoma, or low grade glioma. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of glioma by blocking blood flow to the tumor. Drugs used in chemotherapy, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bevacizumab together with irinotecan may kill more tumor cells.
This phase I trial is studying the side effects and best dose of ispinesib in treating young patients with relapsed or refractory solid tumors or lymphoma. Drugs used in chemotherapy, such as ispinesib, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing
This phase I trial is studying the side effects and best dose of AZD2171 in treating young patients with recurrent, progressive, or refractory primary CNS tumors. AZD2171 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.