View clinical trials related to Mandibular Nerve Injury.
Filter by:Objective The present study aimed to evaluate which factors were statistically associated with a greater probability of inferior alveolar nerve (IAN) damage during lower third molar surgery. Study Design A prospective observational study was performed at the Oral Surgery Unit of the Umberto I Hospital on 92 patients which underwent surgical extraction of a lower third molar, that was radiographically overlapped to the mandibular canal. All surgeries were performed by the same expert surgeon. A principal component analysis and the exact two-tailed Fisher test were used.
Sagittal split osteotomy (SSO) is a common operation done to move the mandible to correct dentofacial deformities and obstructive sleep apnea (OSA). Inferior alveolar nerve (IAN) injury and associated paresthesia is a well-known negative outcome following SSO, causing temporary or sometimes, permanent numbness in the chin and/or lip. There are limited methods to decrease the occurrence and duration of neurosensory dysfunction. Recent research has shown that platelet-rich fibrin (PRF) aids neurosensory recovery after SSO. Another method to minimize nerve injury is proximal segment grooving (PSG) to create space for the nerve to rest. This grooving method has never been formerly reported. The purpose of this study is to answer the following question: Among patients undergoing bilateral sagittal split osteotomy (BSSO) for dentofacial deformity or OSA, do those who receive PRF with or without PSG, compared to those who do not, have shorter times to functional sensory recovery (FSR) of the IAN? The null hypothesis is that there is no difference among 4 treatment groups and neurosensory outcomes. The specific aims of this proposal are to 1) enroll and randomize subjects who will undergo BSSO for correction of dentofacial deformity or OSA into 4 different treatment groups (PSG with PRF, PSG alone, PRF alone, neither PSG or PRF), 2) measure objective and subjective post-operative nerve function at fixed intervals post-operatively for up to 1 year, 3) compare differences in neurosensory outcomes among treatment groups, and 4) identify other variables that might be associated with differences in neurosensory outcomes.