Clinical Trials Logo

Malignant Glioma clinical trials

View clinical trials related to Malignant Glioma.

Filter by:

NCT ID: NCT04323046 Recruiting - Glioblastoma Clinical Trials

Immunotherapy Before and After Surgery for Treatment of Recurrent or Progressive High Grade Glioma in Children and Young Adults

Start date: October 2, 2020
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects of nivolumab before and after surgery in treating children and young adults with high grade glioma that has come back (recurrent) or is increasing in scope or severity (progressive). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

NCT ID: NCT03952598 Recruiting - Glioma Clinical Trials

Studying the Biology of IDH-mutant Gliomas Via Longitudinal Observation of 2-hydroxyglutarate (2-HG) Using MR Spectroscopy

Start date: October 16, 2019
Phase: N/A
Study type: Interventional

Background: Glioma is a type of brain cancer. Some of these tumors have gene mutations. These mutations can cause a substance called 2-HG to build up in the brain. This makes the tumors more aggressive. Researchers want to better understand 2-HG buildup in the brain. They hope this can help them design better ways to test for gliomas. Objective: To monitor the level of 2-HG in the brains of people with gliomas that have mutations in the IDH1 or IDH2 genes. Eligibility: People ages 18 and older with gliomas with mutations in the IDH1 or IDH2 genes Design: Participants will be screened with: Medical and cancer history Physical exam Reviews of their symptoms and ability to perform normal activities Blood and urine tests MRI scan Samples of their tumor from a past surgery Documentation of their diagnosis and mutation status Participants will have an initial evaluation. This will include repeats of screening tests. It will also include: Neurological exam MRS and MRI scans of the brain: Participants will lie on a table that slides into a metal cylinder. A coil or soft padding will be placed around their head. They will have a contrast agent injected into a vein. Pictures will be taken of the brain. Participants will have follow-up visits every 2-6 month for the rest of their life. Visits will include scans.

NCT ID: NCT03919071 Recruiting - Glioblastoma Clinical Trials

Dabrafenib Combined With Trametinib After Radiation Therapy in Treating Patients With Newly-Diagnosed High-Grade Glioma

Start date: February 20, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well the combination of dabrafenib and trametinib works after radiation therapy in children and young adults with high grade glioma who have a genetic change called BRAF V600 mutation. Radiation therapy uses high energy rays to kill tumor cells and reduce the size of tumors. Dabrafenib and trametinib may stop the growth of tumor cells by blocking BRAF and MEK, respectively, which are enzymes that tumor cells need for their growth. Giving dabrafenib with trametinib after radiation therapy may work better than treatments used in the past in patients with newly-diagnosed BRAF V600-mutant high-grade glioma.

NCT ID: NCT03749187 Recruiting - Glioblastoma Clinical Trials

BGB-290 and Temozolomide in Treating Isocitrate Dehydrogenase (IDH)1/2-Mutant Grade I-IV Gliomas

PNOC017
Start date: April 3, 2019
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of BGB-290 and temozolomide in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma that is newly diagnosed or has come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma.

NCT ID: NCT03746080 Recruiting - Glioblastoma Clinical Trials

Whole Brain Radiation Therapy With Standard Temozolomide Chemo-Radiotherapy and Plerixafor in Treating Patients With Glioblastoma

Start date: December 4, 2018
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well whole brain radiation therapy works with standard temozolomide chemo-radiotherapy and plerixafor in treating patients with glioblastoma (brain tumor). Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Plerixafor is a drug that may prevent recurrence of glioblastoma after radiation treatment. Giving whole brain radiation therapy with standard temozolomide chemo-radiotherapy and plerixafor may work better in treating patients with glioblastoma.

NCT ID: NCT03718767 Recruiting - Glioblastoma Clinical Trials

Nivolumab in Patients With IDH-Mutant Gliomas With and Without Hypermutator Phenotype

Start date: March 27, 2019
Phase: Phase 2
Study type: Interventional

Background: Gliomas are the most common malignant brain tumors. Some have certain changes (mutations) in the genes IDH1 or IDH2. If there are a high number of mutations in a tumor, it is called hypermutator phenotype (HMP). The drug nivolumab helps the immune system fight cancer. Researchers think it can be more effective in patients with IDH1 or IDH2 mutated gliomas with HMP. They will test gliomas with and without HMP. Objectives: To see if nivolumab stops tumor growth and prolongs the time that the tumor is controlled. Eligibility: Adults 18 years or older with IDH1 or IDH2 mutated gliomas Design: Participants will be screened with: Medical history Physical exam Heart, blood, and pregnancy tests Review of symptoms and activity levels Brain magnetic resonance imaging (MRI). Participants will lie in a cylinder that takes pictures in a strong magnetic field. Tumor samples Participants will get the study drug in 4-week cycles. They will get it through a small plastic tube in a vein (IV) on days 1 and 15 of cycles 1-4. For cycles 5-16, they will get it just on day 1. On days 1 and 15 of each cycle, participants will repeat some or all screening tests. After cycle 16, participants will have 3 follow-up visits over 100 days. They will answer health questions, have physical and neurological exams, and have blood tests. They may have a brain MRI. Participants whose disease did not get worse but who finished the study drug within 1 year of treatment may have imaging studies every 8 weeks for up to 1 year. Participants will be called or emailed every 6 months with questions about their health.

NCT ID: NCT03684109 Recruiting - Glioma Clinical Trials

Non-invasive Glioma Characterization Through Molecular Imaging

Start date: January 25, 2019
Phase: N/A
Study type: Interventional

MRI-based sequences can provide non-invasive quantification of intratumoral 2-hydroxyglutarate (2HG) distribution and tumor cellularity in human gliomas and help guide the development of novel glioma therapies.

NCT ID: NCT03510208 Recruiting - Malignant Glioma Clinical Trials

Panitumumab-IRDye800 in Diagnosing Participants With Malignant Glioma Undergoing Surgery

Start date: May 16, 2018
Phase: Phase 1/Phase 2
Study type: Interventional

The phase I/II trial studies the side effects and best dose of panitumumab-IRDye800 in diagnosing participants with malignant glioma who undergo surgery. Panitumumab-IRDye800 can attach to tumor cells and make them more visible using a special camera during surgery, which may help surgeons better distinguish tumor cells from normal brain tissue and identify small tumors that cannot be seen using current imaging methods.

NCT ID: NCT03411408 Recruiting - Malignant Glioma Clinical Trials

Accelerated Hypofractionated Intensity - Modulated Radiotherapy After Hyperbaric Oxygenation for Recurrent High Grade Glioma.

HBO-RT
Start date: February 22, 2018
Phase: N/A
Study type: Interventional

This is a pilot study of radiotherapy using Hypofractionated image - guided helical tomotherapy after hyperbaric oxygen HBO therapy for treatment of recurrent malignant High-grade gliomas. HBO therapy will be perform in conjunction with each RT session. The treatment scheme is: Hyperbaric oxygenation therapy (the maximum period of time from completion of decompression to RT is 60 min) followed by tomotherapy (3-5 consecutive sessions- one fraction per day , 5 Gy / die ). The trial will enroll 24 patients in 24 months with a follow-up period of 1 year.

NCT ID: NCT03155620 Recruiting - Malignant Glioma Clinical Trials

Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders (The Pediatric MATCH Screening Trial)

Start date: July 31, 2017
Phase: Phase 2
Study type: Interventional

This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.