Clinical Trials Logo

Malignant Glioma of Brain clinical trials

View clinical trials related to Malignant Glioma of Brain.

Filter by:

NCT ID: NCT02617134 Recruiting - Clinical trials for Colorectal Carcinoma

CAR-T Cell Immunotherapy in MUC1 Positive Solid Tumor

Start date: November 2015
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this study is to evaluate the safety and effectiveness of CAR-T cell immunotherapy in patients with MUC1 positive relapsed or refractory solid tumor.

NCT ID: NCT01550523 Completed - Clinical trials for Malignant Glioma of Brain

Pilot Immunotherapy Trial for Recurrent Malignant Gliomas

Start date: February 9, 2012
Phase: Phase 1
Study type: Interventional

This human Phase I trial involves taking the patient's own tumor cells during surgical craniotomy, treating them with an investigational new drug (an antisense molecule) designed to shut down a targeted surface receptor protein, and re-implanting the cells, now encapsulated in small diffusion chambers the size of a dime in the patient's abdomen within 24 hours after the surgery. Loss of the surface receptor causes the tumor cells to die in a process called apoptosis. As the tumor cells die, they release small particles called exosomes, each full of tumor antigens. It is believed that these exosomes as well as the presence of the antisense molecule work together to activate the immune system against the tumor as they slowly diffuse out of the chamber. This combination product therefore serves as a slow-release antigen depot. Immune cells are immediately available for activation outside of the chamber because a wound was created to implant these tumor cells and a foreign body (the chamber) is present in the wound. The wound and the chamber fortify the initial immune response which eventually leads to the activation of immune system T cells that attack and eliminate the tumor. By training the immune system to recognize the tumor, the patient is also protected through immune surveillance from later tumor growth should the tumor recur. Compared to the other immunotherapy strategies, this treatment marshalls the native immune system (specifically the antigen presenting cells, or dendritic cells) rather than engineering the differentiation of these immune cells and re-injecting them. Compared to traditional treatment alternatives for tumor recurrence, including a boost of further radiation and more chemotherapy, this treatment represents potentially greater benefit with fewer risks. This combination product serves as a therapeutic vaccine with an acceptable safety profile, which activates an anti-tumor adaptive immune response resulting in radiographic tumor regression.

NCT ID: NCT01017653 Terminated - Clinical trials for Malignant Glioma of Brain

Panitumumab and Irinotecan for Malignant Gliomas

Start date: February 2010
Phase: Phase 2
Study type: Interventional

This is a phase II study of the combination of panitumumab with irinotecan in malignant glioma patients. The primary objective of the study is to determine the activity of the combination of panitumumab with irinotecan as measured by 6-month progression-free survival. Secondary objectives include the following- to determine the safety of panitumumab in combination with irinotecan in patients with malignant glioma; to determine the effect of panitumumab in combination with irinotecan on corticosteroid dose for each patient; to explore any relationship between epidermal growth factor receptor (EGF-R) mutational analysis and efficacy or toxicity; and, to determine the response rate and overall survival of recurrent glioblastoma (GBM) patients treated with panitumumab in combination with irinotecan. The patients will have histologically documented grade 4 malignant gliomas (glioblastoma multiforme or gliosarcoma) that have failed at least one prior chemotherapy regimen and all patients will have received radiation therapy. This study will investigate second or greater line of therapy for recurrent grade 4 malignant glioma. The patient population will include 32 patients. The patients will undergo a baseline magnetic resonance imaging (MRI) as well as a MRI after every six-week cycle to determine response and progression. After 16 patients with recurrent GBM are treated, an interim analysis will be conducted. The most common side effects associated with panitumumab have been dermatological (skin) problems such as erythema (redness of the skin), acneiform rash (skin eruptions of the face), skin exfoliation, pruritus (itching), skin fissures (skin tears), xerosis (dryness of the eye, skin, or mouth), and rash. The most common side effects associated with irinotecan have been decreased blood counts of platelets (increased risk of bleeding), white blood cells (increased risk of infection), red blood cells (anemia); diarrhea, constipation, nausea, vomiting, tiredness, fever, mouth sores, dehydration (excessive loss of body fluids), rash, itching, changes in skin color, swelling, numbness, tingling, dizziness, confusion, low blood pressure, sweating, hot flashes, hair loss, inflammation of the liver, flu-like symptoms, decreased urine output, shortness of breath, and pneumonia (inflammatory disease of the lungs).

NCT ID: NCT00870181 Completed - Glioblastoma Clinical Trials

ADV-TK Improves Outcome of Recurrent High-Grade Glioma

HGG-01
Start date: January 2008
Phase: Phase 2
Study type: Interventional

Malignant gliomas are the most common primary brain tumor in adults, but the prognosis for patients with these tumors remains poor despite advances in diagnosis and standard therapies such as surgery, radiation therapy, and chemotherapy. The advantages of ADV-TK gene therapy highlight its efficacy and safety for glioma patients. This clinical trial was conducted to assess the anti-tumor efficacy and safety of intraarterial cerebral infusion of replication-deficient adenovirus mutant ADV-TK, in combination with systemic intravenous GCV administration in patients with recurrent high-grade glioma.