Clinical Trials Logo

Malignant Astrocytoma clinical trials

View clinical trials related to Malignant Astrocytoma.

Filter by:
  • None
  • Page 1

NCT ID: NCT05686798 Recruiting - Glioblastoma Clinical Trials

Adenovirus Mediated Suicide Gene Therapy With Radiotherapy in Progressive Astrocytoma.

Start date: November 29, 2022
Phase: Phase 1
Study type: Interventional

The primary goal of this Phase I study is to determine the maximum tolerated dose of oncolytic adenovirus mediated double suicide-gene therapy in combination with fractionated stereotactic radiosurgery in patients with recurrent high-grade astrocytoma undergoing resection.

NCT ID: NCT03152318 Recruiting - Glioblastoma Clinical Trials

A Study of the Treatment of Recurrent Malignant Glioma With rQNestin34.5v.2

rQNestin
Start date: July 18, 2017
Phase: Phase 1
Study type: Interventional

This research study is evaluating an investigational drug, an oncolytic virus called rQNestin34.5v.2. This research study is a Phase I clinical trial, which tests the safety of an investigational drug and also tries to define the appropriate dose of the investigational drug as a possible treatment for this diagnosis of recurrent or progressive brain tumor.

NCT ID: NCT00024557 Completed - Clinical trials for Glioblastoma Multiforme

Histologic Effect/Safety of Pre/Post-Operative IL13-PE38QQR in Recurrent Resectable Supratentorial Malignant Glioma Patients

Start date: June 2001
Phase: Phase 1
Study type: Interventional

IL13-PE38QQR is an oncology drug product consisting of IL13 (interleukin-13) and PE38QQR (a bacteria toxin). IL3-PE38QQR is a protein that exhibits cell killing activity against a variety of IL13 receptor-positive tumor cell lines indicating that it may show a therapeutic benefit. In reciprocal competition experiments, the interaction between IL13-PE38QQR and the IL13 receptors was shown to be highly specific for human glioma cells. Patients will receive IL13-PE38QQR via a catheter placed directly into the brain tumor. Tumor recurrence will be confirmed by biopsy. The next day, patients will start a continuous 48-hour infusion of IL13-PE38QQR into the tumor. The dose (concentration) will be increased in the pre-resection infusion until the endpoint is reached (histologic evidence of tumor cytotoxicity or a maximum tolerated dose). Tumor resection will be planned for one week after biopsy, plus or minus 1 day. A histologically-effective concentration (HEC) will be determined using pathologic observations. At the end of resection, three catheters will be placed in brain tissue next to the resection site and assessed within 24 hours using MRI. On the second day after surgery, IL13-PE38QQR infusion will begin and will continue for 4 days. The lowest pre-resection IL13-PE38QQR concentration will be used as the starting dose for post-resection infusions. After an HEC or maximum tolerated dose (MTD) is determined, the pre-resection infusion will no longer be administered. Subsequent patients will have tumor resection and placement of three peri-tumoral catheters at study entry. IL13-PE38QQR will be infused starting on the second day after surgery and continuing for 4 days. Escalation of the post-resection IL13-PE38QQR concentration will be continued until the previously-defined HEC or MTD is reached, after which duration of the post-resection infusion will be increased in one day increments for up to 6 days. If a post-resection MTD is obtained, there will be no increase in duration of infusion. In the final stage of the study, catheters will be placed 2 days after tumor resection, and a 4-day IL13-PE38QQR infusion will begin the day after catheter placement. Patients will be observed clinically and radiographically for toxicity and duration of tumor control.