Machine Learning Clinical Trial
Official title:
Comparison of an Artificial Intelligence-Assisted Rehabilitation Program for Shoulder Musculoskeletal Disorders and the Clinical Decision Making of Therapists
People with shoulder musculoskeletal disorders among middle-aged and older adults have the highest need of rehabilitation services. The population growth and aging society subsequently increase the number of disabled people, the healthcare costs and the needs for healthcare professionals. The evidence exists to support the beneficial effect of exercises on function and quality of life. Traditionally, a rehabilitation program is designed by therapists for each patient depending on their conditions. In recent years, AI is increasingly being employed in the field of physical and rehabilitation medicine, however, there is no study of applying AI in predicting rehabilitation programs for shoulder musculoskeletal disorders. The main purpose of this study is to explore the possibilities of using supervised machine learning approach to predict rehabilitation programs for shoulder musculoskeletal disorders. Twenty-three features are identified based on shoulder range of motion, pain, whether or not perform surgical procedure. Each exercise is considered as a label with a total of twenty-five exercises. Dataset is collected by clinical therapists to develop and train the model. Each patient has to receive at least two months of rehabilitation and two times of evaluation. Logistic regression, support vector machine and random forest are used to build the computational model. Accuracy, precision, recall, F-1 score and AUC are used to evaluate the performance of the computational model in machine learning. After training, we compare the consistency of rehabilitation programs predicted by using machine learning model and the clinical decision making of therapists.
n/a
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05040958 -
Carotid Atherosclerotic Plaque Load and Neck Circumference
|
||
Completed |
NCT04440553 -
A Mobile App to Increase Physical Activity in Students
|
N/A | |
Completed |
NCT04966598 -
Machine Learning Predict Acute Kidney Injury in Patients Following Cardiac Surgery
|
||
Completed |
NCT04828655 -
Analysis of Bioparametric Measures for Correlating Daily Habits and Reducing Blood Pressure
|
N/A | |
Completed |
NCT04977687 -
Machine Learning Predict Renal Replacement Therapy After Cardiac Surgery
|
||
Recruiting |
NCT06277297 -
Prognotic Role of CMR in Takotsubo Syndrome
|
||
Recruiting |
NCT06204133 -
Model Study on Cervical Cancer Screening Strategies and Risk Prediction
|
||
Completed |
NCT05085743 -
Prediction of Endotracheal Tube Depth by Using Deep Convolutional Neural Networks
|
||
Not yet recruiting |
NCT05809232 -
Impact of Machine Learning-based Clinician Decision Support Algorithms in Perioperative Care
|
N/A | |
Not yet recruiting |
NCT04399811 -
Near-infrared Vision for Microcirculatory Status
|
||
Recruiting |
NCT05906719 -
Machine Vision Based MDS-UPDRS III Machine Rating
|
||
Completed |
NCT06278272 -
AI Evaluation of Pancreatic Exocrine Insufficiency in CP Patients
|
||
Withdrawn |
NCT05442762 -
Social Media-based Vaccine Confidence and Hesitancy Monitoring
|
||
Not yet recruiting |
NCT06421480 -
Using Machine Learning to Detect Risky Behavior in Psychiatric Clinics
|
||
Not yet recruiting |
NCT06423066 -
Developing a Machine Learning Model to Predict Pleural Adhesion Preoperatively Using Pleural Ultrasound
|
||
Not yet recruiting |
NCT06428344 -
Accuracy of an Artificial Intelligence-assisted Diagnostic System for Caries Diagnosis: a Prospective Multicenter Clinical Study
|
||
Not yet recruiting |
NCT05797064 -
Establishment of a Feasibility Model for NOSE Surgery Based on Machine Learning
|
||
Recruiting |
NCT05410171 -
Machine Learning-based Early Clinical Warning of High-risk Patients
|
N/A | |
Active, not recruiting |
NCT04192175 -
Identification of Patients Admitted With COPD Exacerbations and Predicting Readmission Risk Using Machine Learning
|
||
Completed |
NCT05433519 -
Diagnostic Accuracy of a Novel Machine Learning Algorithm to Estimate Gestational Age
|