View clinical trials related to Lymphoplasmacytic Lymphoma.
Filter by:This is a non-randomized clinical trial to evaluate the safety and efficacy of CD22CART administered after lymphodepleting chemotherapy in adults with relapsed / refractory B Cell Lymphomas. All evaluable participants will be followed for overall survival (OS), progression free survival (PFS), and duration of response (DOR). An evaluable participant is one who completes leukapheresis, lymphodepleting chemotherapy and CART infusion.
The purpose of this study is to evaluate safety and tolerability and to determine the maximum tolerated dose (MTD) or maximum administered dose (MAD) and/or recommended dose (RD) of SGR-1505.
This trial aims to demonstrate the feasibility of this approach to reliably generate product and to safely administer the product to patients who have B-Cell Lymphoma and B-Acute Lymphoblastic Leukemia.
An open label single-arm clinical trial to evaluate the safety, tolerability, PK, PD, and preliminary efficacy of HMPL-760 in patients with previously treated CLL/SLL or NHL
This phase II trial studies the effect of acalabrutinib and obinutuzumab in treating patients with follicular lymphoma or other indolent non-Hodgkin lymphoma for which the patient has not received treatment in the past (previously untreated). Acalabrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with obinutuzumab may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Giving acalabrutinib and obinutuzumab may kill more cancer cells.
This prospective observational study aims to evaluate the robustness and persistence of immune responses to vaccination, define factors associated with impaired immune responses and assess the incidence of COVID-19 infections in vaccinated individuals. To do this, we will collect peripheral blood from patients with lymphoid cancers before and after their COVID-19 vaccination. The blood will be explored in the laboratory for antibodies to SARS-CoV-2 and T-cell responses to the spike protein. Detailed clinical information will also be collated on about their cancer and treatment.
This phase II trial studies the effects of venetoclax and rituximab in comparison to ibrutinib and rituximab in treating patients with previously untreated Waldenstrom's macroglobulinemia/lymphoplasmacytic lymphoma. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving venetoclax and rituximab may work better in treating patients with previously untreated Waldenstrom's macroglobulinemia than ibrutinib and rituximab alone.
This phase II/III trial compares the side effects and activity of oral azacitidine in combination with the standard drug therapy (reduced dose rituximab-cyclophosphamide, doxorubicin, vincristine, and prednisone [R-miniCHOP]) versus R-miniCHOP alone in treating patients 75 years or older with newly diagnosed diffuse large B cell lymphoma. R-miniCHOP includes a monoclonal antibody (a type of protein), called rituximab, which attaches to the lymphoma cells and may help the immune system kill these cells. R-miniCHOP also includes prednisone which is an anti-inflammatory medication and a combination of 3 chemotherapy drugs, cyclophosphamide, doxorubicin, and vincristine. These 3 chemotherapy drugs, as well as oral azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Combining oral azacitidine with R-miniCHOP may shrink the cancer or extend the time without disease symptoms coming back or extend patient's survival when compared to R-miniCHOP alone.
This study will assess safety and feasibility of infusing genetically modified autologous T cells transduced to express a chimeric antigen receptor targeting the B cell surface antigen Cluster of Differentiation 19 (CD19)
This study is designed as a long-term follow-up study of participants who have receive genetically modified autologous CLBR001 CAR-T cells