Clinical Trials Logo

Lymphomatoid Granulomatosis clinical trials

View clinical trials related to Lymphomatoid Granulomatosis.

Filter by:

NCT ID: NCT00217412 Completed - Clinical trials for Unspecified Childhood Solid Tumor, Protocol Specific

Vorinostat With or Without Isotretinoin in Treating Young Patients With Recurrent or Refractory Solid Tumors, Lymphoma, or Leukemia

Start date: August 2005
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat when given together with isotretinoin in treating young patients with recurrent or refractory solid tumors, lymphoma, or leukemia. Drugs used in chemotherapy, such as vorinostat, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Isotretinoin may cause cancer cells to look more like normal cells, and to grow and spread more slowly. Giving vorinostat together with isotretinoin may be an effective treatment for cancer.

NCT ID: NCT00119392 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Yttrium Y 90 Ibritumomab Tiuxetan, Fludarabine, Radiation Therapy, and Donor Stem Cell Transplant in Treating Patients With Relapsed or Refractory Non-Hodgkin's Lymphoma

Start date: June 2004
Phase: Phase 2
Study type: Interventional

Monoclonal antibodies, such as yttrium Y 90 ibritumomab tiuxetan, can block find cancer cells and either kill them or carry cancer-killing substances to them without harming normal cells. Giving monoclonal antibodies, low doses of chemotherapy, such as fludarabine phosphate, and low dose total-body radiation therapy before a donor peripheral stem cell transplant helps stop the growth of cancer cells and also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine or mycophenolate mofetil after the transplant may stop this from happening

NCT ID: NCT00118352 Active, not recruiting - Clinical trials for Chronic Myelomonocytic Leukemia

Alemtuzumab, Fludarabine Phosphate, and Total-Body Irradiation Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer

Start date: March 2005
Phase: Phase 2
Study type: Interventional

This phase II trial is studying the side effects and best dose of alemtuzumab when given together with fludarabine phosphate and total-body irradiation followed by cyclosporine and mycophenolate mofetil in treating patients who are undergoing a donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, a monoclonal antibody, such as alemtuzumab, and radiation therapy before a donor stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.

NCT ID: NCT00118170 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Sorafenib in Treating Patients With Metastatic or Unresectable Solid Tumors, Multiple Myeloma, or Non-Hodgkin's Lymphoma With or Without Impaired Liver or Kidney Function

Start date: October 2004
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of sorafenib in treating patients with metastatic or unresectable solid tumors, multiple myeloma, or non-Hodgkin's lymphoma with or without impaired liver or kidney function. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Sorafenib may have different effects in patients who have changes in their liver or kidney function

NCT ID: NCT00112723 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Flavopiridol in Treating Patients With Relapsed or Refractory Lymphoma or Multiple Myeloma

Start date: December 2005
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial is studying the side effects and best dose of flavopiridol and to see how well it works in treating patients with lymphoma or multiple myeloma. Drugs used in chemotherapy, such as flavopiridol, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.

NCT ID: NCT00112593 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Fludarabine and Total-Body Irradiation Followed By Donor Stem Cell Transplant and Cyclosporine and Mycophenolate Mofetil in Treating HIV-Positive Patients With or Without Cancer

Start date: November 1999
Phase: N/A
Study type: Interventional

This clinical trial studies the side effects and best dose of giving fludarabine and total-body irradiation (TBI) together followed by a donor stem cell transplant and cyclosporine and mycophenolate mofetil in treating human immunodeficiency virus (HIV)-positive patients with or without cancer. Giving low doses of chemotherapy, such as fludarabine, and TBI before a donor bone marrow or peripheral blood stem cell transplant helps stop the growth of cancer or abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine (CSP) and mycophenolate mofetil (MMF) after the transplant may stop this from happening.

NCT ID: NCT00101270 Completed - Clinical trials for Unspecified Childhood Solid Tumor, Protocol Specific

Oxaliplatin and Irinotecan in Treating Young Patients With Refractory Solid Tumors or Lymphomas

Start date: March 2005
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of oxaliplatin when given together with irinotecan in treating young patients with refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and irinotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may help irinotecan kill more cancer cells by making cancer cells more sensitive to the drug. Giving oxaliplatin together with irinotecan may kill more cancer cells.

NCT ID: NCT00101244 Terminated - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

SB-715992 in Treating Patients With Metastatic or Unresectable Solid Tumors or Hodgkin's or Non-Hodgkin's Lymphoma

Start date: November 2004
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of SB-715992 in treating patients with metastatic or unresectable solid tumors or Hodgkin's or non-Hodgkin's lymphoma. Drugs used in chemotherapy, such as SB-715992, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing

NCT ID: NCT00101205 Terminated - Clinical trials for Refractory Chronic Lymphocytic Leukemia

Oxaliplatin, Ifosfamide and Etoposide in Treating Young Patients With Recurrent or Refractory Solid Tumors or Lymphoma

Start date: November 2004
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of oxaliplatin and etoposide in treating young patients with recurrent or refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may also help etoposide work better by making cancer cells more sensitive to the drug. Giving oxaliplatin together with etoposide may kill more cancer cells.

NCT ID: NCT00098891 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

MS-275 and Isotretinoin in Treating Patients With Metastatic or Advanced Solid Tumors or Lymphomas

Start date: October 2004
Phase: Phase 1
Study type: Interventional

Phase I trial to study the effectiveness of combining MS-275 with isotretinoin in treating patients who have metastatic or advanced solid tumors or lymphomas. MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Isotretinoin may help cancer cells develop into normal cells. MS-275 may increase the effectiveness of isotretinoin by making cancer cells more sensitive to the drug. MS-275 and isotretinoin may also stop the growth of solid tumors or lymphomas by stopping blood flow to the cancer. Combining MS-275 with isotretinoin may kill more cancer cells