Clinical Trials Logo

Lymphomatoid Granulomatosis clinical trials

View clinical trials related to Lymphomatoid Granulomatosis.

Filter by:

NCT ID: NCT00217412 Completed - Clinical trials for Unspecified Childhood Solid Tumor, Protocol Specific

Vorinostat With or Without Isotretinoin in Treating Young Patients With Recurrent or Refractory Solid Tumors, Lymphoma, or Leukemia

Start date: August 2005
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat when given together with isotretinoin in treating young patients with recurrent or refractory solid tumors, lymphoma, or leukemia. Drugs used in chemotherapy, such as vorinostat, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Isotretinoin may cause cancer cells to look more like normal cells, and to grow and spread more slowly. Giving vorinostat together with isotretinoin may be an effective treatment for cancer.

NCT ID: NCT00119392 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Yttrium Y 90 Ibritumomab Tiuxetan, Fludarabine, Radiation Therapy, and Donor Stem Cell Transplant in Treating Patients With Relapsed or Refractory Non-Hodgkin's Lymphoma

Start date: June 2004
Phase: Phase 2
Study type: Interventional

Monoclonal antibodies, such as yttrium Y 90 ibritumomab tiuxetan, can block find cancer cells and either kill them or carry cancer-killing substances to them without harming normal cells. Giving monoclonal antibodies, low doses of chemotherapy, such as fludarabine phosphate, and low dose total-body radiation therapy before a donor peripheral stem cell transplant helps stop the growth of cancer cells and also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine or mycophenolate mofetil after the transplant may stop this from happening

NCT ID: NCT00118170 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Sorafenib in Treating Patients With Metastatic or Unresectable Solid Tumors, Multiple Myeloma, or Non-Hodgkin's Lymphoma With or Without Impaired Liver or Kidney Function

Start date: October 2004
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of sorafenib in treating patients with metastatic or unresectable solid tumors, multiple myeloma, or non-Hodgkin's lymphoma with or without impaired liver or kidney function. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Sorafenib may have different effects in patients who have changes in their liver or kidney function

NCT ID: NCT00112593 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Fludarabine and Total-Body Irradiation Followed By Donor Stem Cell Transplant and Cyclosporine and Mycophenolate Mofetil in Treating HIV-Positive Patients With or Without Cancer

Start date: November 1999
Phase: N/A
Study type: Interventional

This clinical trial studies the side effects and best dose of giving fludarabine and total-body irradiation (TBI) together followed by a donor stem cell transplant and cyclosporine and mycophenolate mofetil in treating human immunodeficiency virus (HIV)-positive patients with or without cancer. Giving low doses of chemotherapy, such as fludarabine, and TBI before a donor bone marrow or peripheral blood stem cell transplant helps stop the growth of cancer or abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine (CSP) and mycophenolate mofetil (MMF) after the transplant may stop this from happening.

NCT ID: NCT00101270 Completed - Clinical trials for Unspecified Childhood Solid Tumor, Protocol Specific

Oxaliplatin and Irinotecan in Treating Young Patients With Refractory Solid Tumors or Lymphomas

Start date: March 2005
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of oxaliplatin when given together with irinotecan in treating young patients with refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and irinotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may help irinotecan kill more cancer cells by making cancer cells more sensitive to the drug. Giving oxaliplatin together with irinotecan may kill more cancer cells.

NCT ID: NCT00098891 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

MS-275 and Isotretinoin in Treating Patients With Metastatic or Advanced Solid Tumors or Lymphomas

Start date: October 2004
Phase: Phase 1
Study type: Interventional

Phase I trial to study the effectiveness of combining MS-275 with isotretinoin in treating patients who have metastatic or advanced solid tumors or lymphomas. MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Isotretinoin may help cancer cells develop into normal cells. MS-275 may increase the effectiveness of isotretinoin by making cancer cells more sensitive to the drug. MS-275 and isotretinoin may also stop the growth of solid tumors or lymphomas by stopping blood flow to the cancer. Combining MS-275 with isotretinoin may kill more cancer cells

NCT ID: NCT00089011 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Tacrolimus and Mycophenolate Mofetil in Preventing Graft-Versus-Host Disease in Patients Who Have Undergone Total-Body Irradiation With or Without Fludarabine Phosphate Followed by Donor Peripheral Blood Stem Cell Transplant for Hematologic Cancer

Start date: April 2004
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well tacrolimus and mycophenolate mofetil works in preventing graft-versus-host disease in patients who have undergone total-body irradiation (TBI) with or without fludarabine phosphate followed by donor peripheral blood stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening.

NCT ID: NCT00078858 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Mycophenolate Mofetil and Cyclosporine in Reducing Graft-Versus-Host Disease in Patients With Hematologic Malignancies or Metastatic Kidney Cancer Undergoing Donor Stem Cell Transplant

Start date: September 2003
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies whether stopping cyclosporine before mycophenolate mofetil is better at reducing the risk of life-threatening graft-versus-host disease (GVHD) than the previous approach where mycophenolate mofetil was stopped before cyclosporine. The other reason this study is being done because at the present time there are no curative therapies known outside of stem cell transplantation for these types of cancer. Because of age or underlying health status, patients may have a higher likelihood of experiencing harm from a conventional blood stem cell transplant. This study tests whether this new blood stem cell transplant method can be made safer by changing the order and length of time that immune suppressing drugs are given after transplant.

NCT ID: NCT00072514 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Gemcitabine Hydrochloride, Carboplatin, Dexamethasone, and Rituximab in Treating Patients With Previously Treated Lymphoid Malignancies

Start date: August 2003
Phase: Phase 2
Study type: Interventional

This pilot phase II trial studies the side effects and how well giving gemcitabine hydrochloride, carboplatin, dexamethasone, and rituximab together works in treating patients with previously treated lymphoid malignancies. Drugs used in chemotherapy, such as gemcitabine hydrochloride, carboplatin, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving more than one drug (combination chemotherapy) and giving monoclonal antibody therapy with chemotherapy may kill more cancer cells

NCT ID: NCT00054639 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Oblimersen Sodium and Rituximab in Treating Patients With Recurrent B-cell Non-Hodgkin Lymphoma

Start date: January 2003
Phase: Phase 2
Study type: Interventional

The goal of this clinical research study is to learn if the combination of oblimersen sodium and rituximab can help to shrink or slow the growth of the tumor in patients with B-cell non-Hodgkin's lymphoma who have not responded to earlier treatment. Oblimersen Sodium is an investigational drug. The safety of this combination treatment will also be studied