View clinical trials related to Lymphoma, T-Cell, Peripheral.
Filter by:Background: NSC630176 is a depsipeptide fermentation product from Chromobacterium violaceum with potent cytotoxic activity against human tumor cell lines and in vivo efficacy against both human tumor xenografts and murine tumors (1-3). NSC 630176, herein referred to as depsipeptide, shows a lack of cross resistance with several commonly used cytotoxic agents such as vincristine, 5-fluorouracil, mitomycin C and cyclophosphamide (2). However, it has been defined as a P-glycoprotein (Pgp) substrate by COMPARE analysis of the National Cancer Institute (NCI) drug screen cytotoxicity profile (4). Depsipeptide is a member of a novel class of antineoplastic agents, the histone deacetylase inhibitors. In the phase I trial conducted at the National Cancer Institute (NCI), responses were observed at the maximum tolerated dose (MTD) in patients with cutaneous and peripheral T-cell lymphoma. Objectives: In patients with cutaneous T-cell lymphoma, the primary end points to be examined are overall response rate, complete response rate and duration of response. In patients with relapsed peripheral T-cell lymphoma, the endpoints to be examined are overall response rate and complete response rate. To evaluate the tolerability of depsipeptide with extended cycles of therapy. Eligibility: Patients with cutaneous T-cell lymphoma (mycosis fungoides or Sezary syndrome) or other peripheral T-cell lymphomas are eligible. Design: Depsipeptide will be administered at 14 mg/m^2, over 4 hours on days 1, 8 and 15. This trial will accrue in six cohorts; Arm 1, patients with cutaneous T-cell lymphoma who have had less than or equal to two prior cytotoxic chemotherapy regimens; Arm 2, patients with peripheral T-cell lymphoma who have had less than or equal to two prior cytotoxic chemotherapy regimens; Arm 3, patients with cutaneous and peripheral T-cell lymphoma who have had more than two prior cytotoxic chemotherapy regimens; Arm 4, patients with other mature T-cell lymphomas; Arm 5, a replicate arm of arm 1; Arm 6, patients with peripheral T-cell lymphoma who have had more than two prior cytotoxic chemotherapy regimens; Arm 7, patients with cutaneous T cell lymphoma who have received vorinostat. Dose may be adjusted based on toxicities.
This clinical trial studies fludarabine phosphate, low-dose total-body irradiation, and donor stem cell transplant followed by cyclosporine, mycophenolate mofetil, and donor lymphocyte infusion in treating patients with hematopoietic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also keep the patient's immune response from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
This pilot clinical trial studies low-dose total body irradiation and donor peripheral blood stem cell transplant followed by donor lymphocyte infusion in treatment patients with non-Hodgkin lymphoma, chronic lymphocytic leukemia, or multiple myeloma. Giving total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them. Giving an infusion of the donor's white blood cells (donor lymphocyte infusion) may boost this effect.