Clinical Trials Logo

Lymphoma, Non-Hodgkin clinical trials

View clinical trials related to Lymphoma, Non-Hodgkin.

Filter by:

NCT ID: NCT01619761 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

NK Cells in Cord Blood Transplantation

Start date: May 3, 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best way to give natural killer cells and donor umbilical cord blood transplant in treating patients with hematological malignancies. Giving chemotherapy with or without total body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

NCT ID: NCT01595048 Active, not recruiting - Clinical trials for Childhood Diffuse Large Cell Lymphoma

Combination Chemotherapy With or Without Rituximab in Treating Younger Patients With Stage III-IV Non-Hodgkin Lymphoma or B-Cell Acute Leukemia

Start date: June 2012
Phase: Phase 2/Phase 3
Study type: Interventional

This randomized phase II/III trial studies how well combination chemotherapy with or without rituximab works in treating younger patients with stage III-IV non-Hodgkin lymphoma or B-cell acute leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibody, such as rituximab, may block cancer growth in different ways by targeting certain cells. It is not yet known whether combination chemotherapy together with rituximab is more effective in treating patients with non-Hodgkin lymphoma or B-cell acute leukemia.

NCT ID: NCT01574274 Active, not recruiting - Clinical trials for Acute Lymphoblastic Leukemia

SC-PEG Asparaginase vs. Oncaspar in Pediatric Acute Lymphoblastic Leukemia (ALL) and Lymphoblastic Lymphoma

Start date: June 2012
Phase: Phase 2
Study type: Interventional

This study is being conducted to learn about the effects of SC-PEG, which is a new form of a chemotherapy drug called asparaginase. Asparaginase is used to treat ALL and lymphoblastic lymphoma. The standard form of asparaginase, called Elspar, is given in the muscle once a week for 30 weeks. There are other forms of asparaginase. The investigators will be studying two of these: Oncaspar and Calaspargase Pegol (SC-PEG). The investigators have previously studied giving Oncaspar in the vein (instead of the muscle) every 2 weeks in patients with ALL, and have shown that this dosing did not lead to any more side effects than Elspar given weekly in the muscle. The study drug, SC-PEG, is very similar but not identical to Oncaspar. SC-PEG has been given in the vein to children and adolescents with ALL as part of other research studies, and it appears to last longer in the blood after a dose than Oncaspar. It has not yet been approved by the FDA. The goal of this research study is to learn whether the side effects and drug levels of SC-PEG given in the vein every 3 weeks are similar to Oncaspar given into the vein about every 2 weeks. The study will also help to determine whether changing treatment for children and adolescents with ALL with high levels of minimal residual disease may improve cure rates. Measuring minimal disease (MRD) is a laboratory test that finds low levels of leukemia cells that the investigators cannot see under the microscope. In the past, it has been shown that children and adolescents with ALL with high levels of MRD after one month of treatment are less likely to be cured than those with low levels of MRD. Therefore, on the study, the bone marrow and blood at the end of the first month of treatment will be measured in participants with leukemia, and changes in therapy will be implemented based on this measurement. It is not known for sure that changing treatment will improve cure rates. MRD levels can only be measured if the marrow is filled with cancer cells at the time of diagnosis. Therefore, MRD studies will only be done in children and adolescents with ALL and not in those with lymphoblastic lymphoma. Another part of the study is to determine whether giving antibiotics during the first month of treatment even to participants without fever will prevent serious infections in the blood and other parts of the body. About 25% of children and adolescents with ALL and lymphoblastic lymphoma who receive standard treatment develop a serious blood infection from a bacteria during the first month of treatment. Typically, antibiotics (medicines that fight bacteria) are given by vein only after a child with leukemia or lymphoma develops a fever or have other signs of infection. In this study, antibiotics will be given by mouth or in the vein to all participants during the first month of treatment, whether or not they develop fever. Another goal of the study to learn how vitamin D levels relate to bone problems (such as broken bones or fractures) that children and adolescents with ALL and lymphoblastic lymphoma experience while on treatment. Some of the chemotherapy drugs used to treat ALL and lymphoblastic lymphoma can make bones weaker, which make fractures more likely. Vitamin D is a natural substance from food and sunlight that can help keep bones strong. The investigators will study how often participants have low levels of vitamin D while receiving chemotherapy, and, for those with low levels, whether giving vitamin D supplements will increase those levels. Another focus of the study is to learn more about the biology of ALL and lymphoblastic lymphoma by doing research on blood, bone and spinal fluid bone marrow samples. The goal of this research is to improve treatment for children with leukemia in the future.

NCT ID: NCT01562509 Active, not recruiting - Clinical trials for Non-Hodgkin Lymphoma

PEARL Study: Improvement of Non-Hodgkin's Lymphoma Care

Start date: October 2012
Phase: N/A
Study type: Interventional

The main objective of the proposed study is to assess the effectiveness, feasibility and costs of a tailored strategy (developed in accordance with the barriers found and current practice) to improve care for patients with non-Hodgkin's lymphomas (NHL), compared to a common strategy of 'audit & feedback'.

NCT ID: NCT01545544 Active, not recruiting - Chronic Hepatitis C Clinical Trials

Observational Study of B-Cell Non Hodgkin Lymphomas (NHL) Associated With Hepatitis C Virus (HCV)

Lympho C
Start date: November 2006
Phase: N/A
Study type: Observational

An prospective / retrospective multicenter observational study whose objectives are to understand the interactions between hepatitis c virus and Non Hodgkin lymphomas. The characteristics , evolution and treatment of diseases will be observed from the study.

NCT ID: NCT01516580 Active, not recruiting - Clinical trials for B-cell Non Hodgkin Lymphoma

Intergroup Randomized Trial for Children or Adolescents With B-Cell Non Hodgkin Lymphoma or B-Acute Leukemia: Rituximab Evaluation in High Risk Patients

Start date: December 2011
Phase: Phase 3
Study type: Interventional

The aim of the trial is to test whether adding 6 injections of rituximab to standard "Lymphome malin B" LMB chemotherapy regimen improves the Event Free Survival (EFS) compared with LMB chemotherapy alone in children / adolescents with advanced stage B-cell Non-Hodgkin Lymphoma (NHL) / B-Acute Leukemia (B-AL)(stage III and LDH > Nx2, any stage IV or B-AL).

NCT ID: NCT01494103 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Administration of Donor T Cells With the Caspase-9 Suicide Gene

DOTTI
Start date: November 2011
Phase: Phase 1
Study type: Interventional

Patients will be receiving a stem cell transplant as treatment for their disease. As part of the stem cell transplant, patients will be given very strong doses of chemotherapy, which will kill all their existing stem cells. A close relative of the patient will be identified, whose stem cells are not a perfect match for the patient's, but can be used. This type of transplant is called "allogeneic", meaning that the cells are from a donor. With this type of donor who is not a perfect match, there is typically an increased risk of developing GvHD, and a longer delay in the recovery of the immune system. GvHD is a serious and sometimes fatal side-effect of stem cell transplant. GvHD occurs when the new donor cells (graft) recognize that the body tissues of the patient (host) are different from those of the donor. In this study, investigators are trying to see whether they can make special T cells in the laboratory that can be given to the patient to help their immune system recover faster. As a safety measure, we want to "program" the T cells so that if, after they have been given to the patient, they start to cause GvHD, we can destroy them ("suicide gene"). Investigators will obtain T cells from a donor, culture them in the laboratory, and then introduce the "suicide gene" which makes the cells sensitive to a specific drug called AP1903. If the specially modified T cells begin to cause GvHD, the investigators can kill the cells by administering AP1903 to the patient. We have had encouraging results in a previous study regarding the effective elimination of T cells causing GvHD, while sparing a sufficient number of T cells to fight infection and potentially cancer. More specifically, T cells made to carry a gene called iCasp9 can be killed when they encounter the drug AP1903. To get the iCasp9 gene into T cells, we insert it using a virus called a retrovirus that has been made for this study. The AP1903 that will be used to "activate" the iCasp9 is an experimental drug that has been tested in a study in normal donors with no bad side-effects. We hope we can use this drug to kill the T cells. The major purpose of this study is to find a safe and effective dose of "iCasp9" T cells that can be given to patients who receive an allogeneic stem cell transplant. Another important purpose of this study is to find out whether these special T cells can help the patient's immune system recover faster after the transplant than they would have otherwise.

NCT ID: NCT01479842 Active, not recruiting - Clinical trials for Recurrent Mantle Cell Lymphoma

Rituxan/Bendamustine/PCI-32765 in Relapsed DLBCL, MCL, or Indolent Non-Hodgkin's Lymphoma

Start date: December 7, 2011
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of BTK inhibitor PCI-32765 when given together with rituximab and bendamustine hydrochloride in treating patients with recurrent non-Hodgkin lymphoma (NHL). BTK inhibitor PCI-32765 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving BTK inhibitor PCI-32765 together with rituximab and bendamustine hydrochloride may kill more cancer cells.

NCT ID: NCT01396070 Active, not recruiting - Clinical trials for Lymphoma, Non-Hodgkin

Pilot Study of Brentuximab Vedotin (SGN-35) in Patients With MF With Variable CD30 Expression Level

Start date: June 2011
Phase: N/A
Study type: Interventional

The purpose of this study is to learn the effects of an investigational medication, SGN 35, on patients with mycosis fungoides. Despite a wide range of therapeutic options, the treatments are associated with short response duration, thus this condition is largely incurable. This investigational drug may offer less toxicity than standard treatments and have better tumor specific targeting.

NCT ID: NCT01333046 Active, not recruiting - Hodgkin Lymphoma Clinical Trials

Administration of TAA-Specific CTLs; Hodgkin or Non-Hodgkin Lymphoma; TACTAL

TACTAL
Start date: January 2012
Phase: Phase 1
Study type: Interventional

Patients have a type of lymph gland disease called Hodgkin or non-Hodgkin lymphoma which has come back, or may come back, or has not gone away after treatment, including the standard treatment known for these diseases. This a research study using special immune system cells called tumor associated antigen (TAA)-specific cytotoxic T lymphocytes, a new experimental therapy. This sort of therapy has been used previously to treat Hodgkin or non-Hodgkin lymphomas that show proof of infection with Epstein-Barr virus (EBV), the virus that causes infectious mononucleosis ("mono" or the "kissing disease"). EBV is found in cancer cells of up to half of all patients with Hodgkin's and non-Hodgkin lymphoma. This suggests that it may play a role in causing lymphoma. The cancer cells infected by EBV are able to hide from the body's immune system and escape being killed. Investigators tested whether special white blood cells, called T cells, that were trained to kill EBV-infected cells could affect these tumors, and in many patients it was found that giving these trained T cells caused a complete or partial response. However, many patients do not have EBV in their lymphoma cells; therefore investigators now want to test whether it is possible to direct these special T cells against other types of proteins on the tumor cell surface with similar promising results. The proteins that will be targeted in this study are called tumor associated antigens (TAAs) - these are cell proteins that are specific to the cancer cell, so they either do not show or show up in low quantities on normal human cells. In this study, we will target five TAAs which commonly show on lymphoma, called: NY-ESO-1, MAGEA4, PRAME, Survivin and SSX. This will be done by using special types of T cells called cytotoxic T lymphocytes (CTLs) generated in the lab. In addition, some adult patients will receive a drug called azacytidine before giving the T cells. We hope that the combination helps the T cells work better.