View clinical trials related to Lymphoma, Large-Cell, Anaplastic.
Filter by:This is an open-label, multicenter, phase 1 study of MLN8237 in participants with advanced hematological malignancies for whom there are limited standard treatment options.
Oral clofarabine is related to two intravenous chemotherapy drugs used for this disease and works in two different ways. It affects the development of new cancer cells by blocking two enzymes that cancer cells need to reproduce. When these enzymes are blocked, the cancer call can no longer prepare the DNA needed to make new cells. Clofarabine also encourages existing cancer cells to die by disturbing components within the cancer cell. This causes the release of a substance that is fatal to the cell. This trial studies the efficacy of oral clofarabine in the treatment of relapsed non-Hodgkin lymphomas.
This phase I trial studies the side effects and best dose of dasatinib in treating patients with solid tumors or lymphomas that are metastatic or cannot be removed by surgery. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
An open-label, multi-dose, single-arm, Phase 1 dose escalation study of XmAb®2513 was conducted to define the MTD or recommended dose(s) for further study, to determine safety and tolerability, to characterize PK and immunogenicity, and to evaluate antitumor activity of XmAb2513 in patients with HL and ALCL (non-cutaneous) and who have received two or more prior therapeutic regimens. There will be no intra-patient dose escalation.
This phase I/II trial is studying the side effects and best dose of vorinostat when given together with rituximab, ifosfamide, carboplatin, and etoposide and to see how well they work in treating patients with relapsed or refractory lymphoma or previously untreated T-cell non-Hodgkin lymphoma or mantle cell lymphoma. Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving vorinostat together with rituximab and combination chemotherapy may kill more cancer cells
PF-02341066 may work in cancer by blocking the cell growth, migration and invasion of tumor cells. PF-02341066 is a new class of drugs called c-Met/Hepatocyte growth factor receptor tyrosine kinase inhibitors. This compound is also an inhibitor of the anaplastic lymphoma kinase (called ALK) tyrosine kinase and ROS receptor tyrosine kinases. This research study is the first time PF-02341066 will be given to people. PF-02341066 is taken by mouth daily.
This pilot trial studies different high-dose chemotherapy regimens with or without total-body irradiation (TBI) to compare how well they work when given before autologous stem cell transplant (ASCT) in treating patients with hematologic cancer or solid tumors. Giving high-dose chemotherapy with or without TBI before ASCT stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood or bone marrow and stored. More chemotherapy may be given to prepare for the stem cell transplant. The stem cells are then returned to the patient to replace the blood forming cells that were destroyed by the chemotherapy.
This phase I trial is studying the side effects and best dose of vorinostat in treating patients with metastatic or unresectable solid tumors or lymphoma and liver dysfunction. (closed for accrual as of 04/05/2010) Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Vorinostat may have different effects in patients who have changes in their liver function.
This phase I trial is studying the side effects and best dose of bevacizumab and cediranib maleate in treating patients with metastatic or unresectable solid tumor, lymphoma, intracranial glioblastoma, gliosarcoma or anaplastic astrocytoma. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Cediranib maleate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bevacizumab and cediranib maleate may also stop the growth of cancer cells by blocking blood flow to the cancer. Giving bevacizumab together with cediranib maleate may kill more cancer cells.
Phase I study to define the safety profile and pharmacokinetic parameters of SGN-35 in patients with relapsed/refractory CD30-positive hematologic malignancies. This is a single-arm, open-label, Phase I dose escalation study designed to define the MTD, PK, immunogenicity and anti-tumor activity of SGN-35 in patients with relapsed/refractory CD30-positive hematologic malignancies.