View clinical trials related to Lymphoma, Large B-Cell, Diffuse.
Filter by:This phase I/II trial studies whether stopping cyclosporine before mycophenolate mofetil is better at reducing the risk of life-threatening graft-versus-host disease (GVHD) than the previous approach where mycophenolate mofetil was stopped before cyclosporine. The other reason this study is being done because at the present time there are no curative therapies known outside of stem cell transplantation for these types of cancer. Because of age or underlying health status, patients may have a higher likelihood of experiencing harm from a conventional blood stem cell transplant. This study tests whether this new blood stem cell transplant method can be made safer by changing the order and length of time that immune suppressing drugs are given after transplant.
This phase I trial is studying the side effects and best dose of EMD 121974 in treating patients with solid tumors or lymphoma. Cilengitide (EMD 121974) may stop the growth of cancer cells by stopping blood flow to the cancer
This phase II trial is studying how well giving iodine I 131 tositumomab together with etoposide and cyclophosphamide followed by autologous stem cell transplant works in treating patients with relapsed or refractory non-Hodgkin's lymphoma. Radiolabeled monoclonal antibodies, such as iodine I 131 tositumomab, can find cancer cells and deliver radioactive cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy, such as etoposide and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Combining a radiolabeled monoclonal antibody with combination chemotherapy before autologous stem cell transplant may kill more cancer cells
This pilot phase II trial studies the side effects and how well giving gemcitabine hydrochloride, carboplatin, dexamethasone, and rituximab together works in treating patients with previously treated lymphoid malignancies. Drugs used in chemotherapy, such as gemcitabine hydrochloride, carboplatin, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving more than one drug (combination chemotherapy) and giving monoclonal antibody therapy with chemotherapy may kill more cancer cells
RATIONALE: Monoclonal antibodies, such as rituximab, can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Drugs used in chemotherapy, such as cyclophosphamide, doxorubicin, vincristine, and prednisone, use different ways to stop cancer cells from dividing so they stop growing or die. Oblimersen may increase the effectiveness of a chemotherapy drug by making cancer cells more sensitive to the drug. Combining oblimersen with rituximab and combination chemotherapy may kill more cancer cells. PURPOSE: This phase I trial is studying the side effects and best dose of oblimersen when given together with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone in treating patients with stage II, stage III, or stage IV large B-cell lymphoma
RATIONALE: Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for cancer cell growth. PURPOSE: Phase II trial to study the effectiveness of bortezomib in treating patients who have diffuse large B-cell lymphoma that is refractory to previous chemotherapy.
Phase I/II trial to study the effectiveness of combining yttrium Y 90 ibritumomab tiuxetan with rituximab in treating patients who have localized or recurrent lymphoproliferative disorder after an organ transplant. Monoclonal antibodies such as yttrium Y 90 ibritumomab tiuxetan and rituximab can locate cancer cells and either kill them or deliver radioactive cancer-killing substances to them without harming normal cells
This phase I trial is studying how well ipilimumab works after allogeneic stem cell transplant in treating patients with persistent or progressive cancer. Monoclonal antibodies can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells.
Phase II trial to study the effectiveness of combining bryostatin 1 with vincristine in treating patients who have progressive or relapsed non-Hodgkin's lymphoma after autologous bone marrow transplantation or autologous stem cell transplantation. Drugs used in chemotherapy such as vincristine use different ways to stop cancer cells from dividing so they stop growing or die. Bryostatin 1 may help vincristine kill more cancer cells by making the cells more sensitive to the drug
This phase II trial is studying how well ixabepilone works in treating patients with relapsed or refractory aggressive non-Hodgkin's lymphoma. Drugs used in chemotherapy, such as ixabepilone, work in different ways to stop cancer cells from dividing so they stop growing or die.