View clinical trials related to Lymphoblastic Lymphoma.
Filter by:The main purpose of this study is to evaluate the safety, recommended dose, and preliminary anti-tumor activity of WU-CART-007 in patients with relapsed or refractory (R/R) T-cell acute lymphoblastic leukemia (T-ALL) or lymphoblastic lymphoma (LBL).
This phase II trial studies how well Triplex vaccine works in preventing cytomegalovirus (CMV) infection in patients undergoing a hematopoietic stem cell transplantation. CMV is a virus that may be carried for life and does not cause illness in most healthy individuals. However, in people whose immune systems are lowered (such as those undergoing stem cell transplantation), CMV can reproduce and cause disease and even death. The Triplex vaccine is made up of 3 small pieces of CMV deoxyribonucleic acid (DNA) (the chemical form of genes) placed into a weakened virus called modified vaccinia Ankara (MVA) that may help produce immunity (the ability to recognize and respond to an infection) and reduce the risk of developing complications related to CMV infection.
AINV18P1 is a Phase 1 study where palbociclib will be administrated in combination with a standard re-induction platform in pediatric relapsed Acute Lymphoblastic Leukemia (ALL) and lymphoblastic lymphoma (LL). LL patients are included because the patient population is rare and these patients are most commonly treated with ALL regimens. The proposed palbociclib starting dose for this study will be 50 mg/m^2/day for 21 days.
This randomized clinical trial studies how well a high-intensity intervention parenting program works in improving learning and school functioning in Latino children with acute leukemia or lymphoblastic lymphoma. A high-intensity intervention program may help doctors to see whether training parents or caregivers in specific parenting skills and "pro-learning" behaviors will result in better learning and school outcomes for Latino children with acute leukemia or lymphoblastic lymphoma. It is not yet known if a high-intensity intervention program is more beneficial than a standard of care lower intensity parenting intervention.
A phase IV study with the primary goal to optimize therapy of adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma (LBL) by dose and time intensive, pediatric based chemotherapy, risk adapted stem cell transplantation (SCT) and minimal residual disease (MRD) based individualised and intensified therapy. Study will further evaluate the role of asparaginase intensification, the extended use of rituximab and the use of nelarabine as consolidation therapy in T-ALL in a phase III-part of the study. Furthermore two randomisations will focus on the role of central nervous system (CNS) irradiation in combination with intrathecal therapy versus intrathecal therapy only in B-precursor ALL/LBL and the role of SCT in high-risk patients with molecular complete remission. Finally a new, dose reduced induction therapy in combination with Imatinib will be evaluated in Ph/BCR-ABL positive ALL.
The outcomes of children with lymphoblastic lymphoma (LBL) in China in the investigators' previous study were not unexpected. In this study, through further modification treatment protocols and strengthen domestic multicenter collaboration, the investigators try to improve survival for children with LBL when compared to the previous study.
This randomized phase II trial studies the safety and how well multi-peptide cytomegalovirus (CMV)-modified vaccinia Ankara (MVA) vaccine works in reducing CMV complications in patients previously infected with CMV and are undergoing a donor hematopoietic cell transplant. CMV is a virus that may reproduce and cause disease and even death in patients with lowered immune systems, such as those undergoing a hematopoietic cell transplant. By placing 3 small pieces of CMV deoxyribonucleic acid (DNA) (the chemical form of genes) into a very safe, weakened virus called MVA, the multi-peptide CMV-MVA vaccine may be able to induce immunity (the ability to recognize and respond to an infection) to CMV. This may help to reduce both CMV complications and reduce the need for antiviral drugs in patients undergoing a donor hematopoietic cell transplant.
This phase II trial is for patients with acute lymphocytic leukemia, acute myeloid leukemia, myelodysplastic syndrome or chronic myeloid leukemia who have been referred for a peripheral blood stem cell transplantation to treat their cancer. In these transplants, chemotherapy and total-body radiotherapy ('conditioning') are used to kill residual leukemia cells and the patient's normal blood cells, especially immune cells that could reject the donor cells. Following the chemo/radiotherapy, blood stem cells from the donor are infused. These stem cells will grow and eventually replace the patient's original blood system, including red cells that carry oxygen to our tissues, platelets that stop bleeding from damaged vessels, and multiple types of immune-system white blood cells that fight infections. Mature donor immune cells, especially a type of immune cell called T lymphocytes (or T cells) are transferred along with these blood-forming stem cells. T cells are a major part of the curative power of transplantation because they can attack leukemia cells that have survived the chemo/radiation therapy and also help to fight infections after transplantation. However, donor T cells can also attack a patient's healthy tissues in an often-dangerous condition known as Graft-Versus-Host-Disease (GVHD). Drugs that suppress immune cells are used to decrease the severity of GVHD; however, they are incompletely effective and prolonged immunosuppression used to prevent and treat GVHD significantly increases the risk of serious infections. Removing all donor T cells from the transplant graft can prevent GVHD, but doing so also profoundly delays infection-fighting immune reconstitution and eliminates the possibility that donor immune cells will kill residual leukemia cells. Work in animal models found that depleting a type of T cell, called naïve T cells or T cells that have never responded to an infection, can diminish GVHD while at least in part preserving some of the benefits of donor T cells including resistance to infection and the ability to kill leukemia cells. This clinical trial studies how well the selective removal of naïve T cells works in preventing GVHD after peripheral blood stem cell transplants. This study will include patients conditioned with high or medium intensity chemo/radiotherapy who can receive donor grafts from related or unrelated donors.
This study is being conducted to learn about the effects of SC-PEG, which is a new form of a chemotherapy drug called asparaginase. Asparaginase is used to treat ALL and lymphoblastic lymphoma. The standard form of asparaginase, called Elspar, is given in the muscle once a week for 30 weeks. There are other forms of asparaginase. The investigators will be studying two of these: Oncaspar and Calaspargase Pegol (SC-PEG). The investigators have previously studied giving Oncaspar in the vein (instead of the muscle) every 2 weeks in patients with ALL, and have shown that this dosing did not lead to any more side effects than Elspar given weekly in the muscle. The study drug, SC-PEG, is very similar but not identical to Oncaspar. SC-PEG has been given in the vein to children and adolescents with ALL as part of other research studies, and it appears to last longer in the blood after a dose than Oncaspar. It has not yet been approved by the FDA. The goal of this research study is to learn whether the side effects and drug levels of SC-PEG given in the vein every 3 weeks are similar to Oncaspar given into the vein about every 2 weeks. The study will also help to determine whether changing treatment for children and adolescents with ALL with high levels of minimal residual disease may improve cure rates. Measuring minimal disease (MRD) is a laboratory test that finds low levels of leukemia cells that the investigators cannot see under the microscope. In the past, it has been shown that children and adolescents with ALL with high levels of MRD after one month of treatment are less likely to be cured than those with low levels of MRD. Therefore, on the study, the bone marrow and blood at the end of the first month of treatment will be measured in participants with leukemia, and changes in therapy will be implemented based on this measurement. It is not known for sure that changing treatment will improve cure rates. MRD levels can only be measured if the marrow is filled with cancer cells at the time of diagnosis. Therefore, MRD studies will only be done in children and adolescents with ALL and not in those with lymphoblastic lymphoma. Another part of the study is to determine whether giving antibiotics during the first month of treatment even to participants without fever will prevent serious infections in the blood and other parts of the body. About 25% of children and adolescents with ALL and lymphoblastic lymphoma who receive standard treatment develop a serious blood infection from a bacteria during the first month of treatment. Typically, antibiotics (medicines that fight bacteria) are given by vein only after a child with leukemia or lymphoma develops a fever or have other signs of infection. In this study, antibiotics will be given by mouth or in the vein to all participants during the first month of treatment, whether or not they develop fever. Another goal of the study to learn how vitamin D levels relate to bone problems (such as broken bones or fractures) that children and adolescents with ALL and lymphoblastic lymphoma experience while on treatment. Some of the chemotherapy drugs used to treat ALL and lymphoblastic lymphoma can make bones weaker, which make fractures more likely. Vitamin D is a natural substance from food and sunlight that can help keep bones strong. The investigators will study how often participants have low levels of vitamin D while receiving chemotherapy, and, for those with low levels, whether giving vitamin D supplements will increase those levels. Another focus of the study is to learn more about the biology of ALL and lymphoblastic lymphoma by doing research on blood, bone and spinal fluid bone marrow samples. The goal of this research is to improve treatment for children with leukemia in the future.
The purpose of this study is to obtain bone marrow and peripheral blood samples, along with clinical data from patients with Multiple Myeloma (MM), Waldenstrom's Macroglobulinemia (WM), Smoldering MM, and other lymphoplasmacytic lymphomas (LPL) including but not limited to MGUS and IgG or IgA LPL. These samples will become part of a tissue bank and will be used in ongoing studies to find out more about the causes and biology of MM, WM and LPL; to identify what factors result in normal cells becoming cancer; to determine how to improve treatment options; to study how the immune system identifies abnormal cells; and to evaluate the immune function in these diseases. The investigators will also study the tumor cells at the level of the participant's genes to develop treatment strategies as well as to better understand how biologic differences affect patient outcomes.