View clinical trials related to Lung Non-Small Cell Carcinoma.
Filter by:This phase I trial studies the side effects of ipilimumab and nivolumab in combination with radiation therapy, and to see how well they work in treating patients with stage II-III non-small cell lung cancer. Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy rays to kill tumor cells and shrink tumors. Ipilimumab and nivolumab may also help radiation therapy work better by making tumor cells more sensitive to the radiation therapy. Giving ipilimumab and nivolumab in combination with radiation therapy may work better in treating patients with stage II-III non-small cell lung cancer compared to standard chemotherapy in combination with radiation therapy.
This phase I trial studies the side effects and best dose of brigatinib and binimetinib in treating patients with stage IIIB-IV non-small cell lung cancer and a type of gene mutation called a rearrangement in the ALK or ROS1 genes. Brigatinib and binimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This trial studies how well dyadic yoga intervention works in improving physical performance and quality of life in patients with stage I-IV non-small cell lung or esophageal cancer undergoing radiotherapy and their caregivers. Dyadic yoga intervention may help to improve physical function, fatigue, sleep difficulties, depressive symptoms, and overall quality of life for patients with non-small cell lung cancer and/or their caregivers.
This trial studies the use of genetics and shared decision making in improving care for patients with stage IVA-C non-small cell lung cancer. Developing educational tools may help patients with non-small cell lung cancer to increase patient treatment knowledge, reduce decisional conflict, and promote treatment shared decision making with their health care providers.
This trial studies treatment effects on development of chemotherapy-induced peripheral neuropathy in patients with cancer. Treatments for cancer can cause a problem to the nervous system (called peripheral neuropathy) that can lead to tingling or less feeling in hands and feet. Studying certain risk factors, such as age, gender, pre-existing conditions, and the type of treatment for cancer may help doctors estimate how likely patients are to develop the nerve disorder.
This phase I trial studies the side effects and how well papaverine hydrochloride and stereotactic radiation therapy body (SBRT) work in treating patients with non-small cell lung cancer. Papaverine hydrochloride may help radiation therapy work better by making tumor cells more sensitive to the radiation therapy. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method can kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Giving papaverine hydrochloride with SBRT may work in treating patients with non-small cell lung cancer.
This trial studies the role of the gut microbiome and effectiveness of a fecal transplant on medication-induced gastrointestinal (GI) complications in patients with melanoma or genitourinary cancer. The gut microbiome (the bacteria and microorganisms that live in the digestive system) may affect whether or not someone develops colitis (inflammation of the intestines) during cancer treatment with immune-checkpoint inhibitor drugs. Studying samples of stool, blood, and tissue from patients with melanoma or genitourinary cancer may help doctors learn more about the effects of treatment on cells, and help doctors understand how well patients respond to treatment. Treatment with fecal transplantation may help to improve diarrhea and colitis symptoms.
This early phase I trial studies the side effects and how well local consolidative therapy (LCT) and brigatinib works in treating patients with non-small cell lung cancer that is stage IV or has come back (recurrent). Giving LCT, such as surgery and/or radiation, after initial treatment may kill any remaining tumor cells. Brigatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving LCT and brigatinib may work better in treating patients with non-small cell lung cancer.
As our population ages and we diagnose early lung cancer in patients who cannot undergo surgery due to multiple medical conditions, there is growing interest in minimally invasive modalities to treat these tumors. In this study we are assessing the ability of bronchoscopic laser ablation to kill the cancer cells in these tumors. Patients will undergo bronchoscopy (a tube-like instrument inserted through the mouth to view the inside of the trachea, air passages, and lungs). A thin catheter will be passed through the wind-pipes and into the lung tumor with computed tomography guidance. A laser probe is then passed through this catheter and it is used to destroy the tumor with heat. Patients will then undergo lung surgery with resection of the tumor, and the resected specimen will be reviewed to describe the amount of tumor-kill produced by the laser.
This phase II/III trial studies how well anamorelin hydrochloride works in reducing anorexia in patients with non-small cell lung cancer that has spread to other places in the body. Anamorelin hydrochloride may help to improve patients' appetite in order to stop weight loss.