View clinical trials related to Low Grade Glioma.
Filter by:The 1635-EORTC-BTG study - Wait or Treat - concerns patients that represent a clinically favorable group of patients with IDHmutated astrocytoma (oligo-symptomatic), without a need for immediate post-operative treatment. It will establish whether early adjuvant treatment with radiotherapy and adjuvant temozolomide in resected IDHmutated astrocytoma will improve outcome, and whether benefits of early treatment outweigh potential side-effects of that, such as deterioration in neurocognitive function or Quality of Live, seizure activity and Patient Reported outcome compared to active surveillance.
The purpose of this study is to find out what effects, good and/or bad, everolimus (RAD001, also known as Afinitor®) alone or with temozolomide has on the patient and the patient's low-grade glioma. Everolimus is being investigated as an anticancer agent based on its potential to prevent tumor cells from growing and multiplying. Specifically, there is a protein called mTOR that we think helps many tumors to grow, and everolimus blocks the effect of mTOR. Temozolomide is also an anticancer agent that prevents tumor cells from growing and multiplying.
The purpose of this study is to look at how a chemotherapy treatment (Temozolomide, also called Temodar) affects the process of ovarian aging which is measured by a decline in ovarian follicle count, in patients with Low Grade Glioma (LGG). It is important to know if different patient factors and Temozolomide influence the rate of ovarian aging in women with LGG who have good long-term survival rates. This will allow better counseling about the effects of this particular chemotherapy agent on fertility in women.
Background: - The blood-brain barrier helps to protect the central nervous system (brain and spinal cord) from harmful toxins, but also prevents potentially useful chemotherapy from reaching brain tumors. The barrier is formed by tight connections between blood vessel cells and molecules found on the surface of brain blood vessels such as Permeability-glycoprotein (Pgp). Pgp may influence whether patients with brain tumors known as gliomas respond to chemotherapy and what side effects they may experience. The compound (11C)N-desmethyl-loperamide ((11C)dLop) reacts to Pgp molecules, and therefore may be used with positron emission tomography (PET) imaging to study the blood brain barrier. Objectives: - To study the ability of PET imaging with (11C)dLop to evaluate the blood brain barrier in brain tumor patients. Eligibility: - Individuals at least 18 years of age who have a brain tumor with characteristics that may be imaged with techniques such as magnetic resonance imaging (MRI) andPET. Design: - Participants will be screened with a full physical examination and medical history, blood and urine tests, and tumor imaging studies (fluorodeoxyglucose PET and MRI scans with contrast agent). - The (11C)dLop scan will take 1 hour to perform. Participants will be asked to return for blood and urine tests approximately 24 hours after the PET scan. - Participants will have followup visits at least every 4 months by repeating a complete history and physical exam and brain MRI. Participants may have repeat scans with (11C)dLop at various points in the course of cancer treatment, but will not have these scans more than twice in a 12-month period. - Participants will be followed for as long as possible during treatment to see if imaging with (11C)dLop correlates with response to the treatments.