Clinical Trials Logo

locked-in Syndrome clinical trials

View clinical trials related to locked-in Syndrome.

Filter by:

NCT ID: NCT06207591 Recruiting - Clinical trials for Traumatic Brain Injury

Investigation on the Cortical Communication System

CortiCom
Start date: December 15, 2023
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to demonstrate communication through a brain implant in people in locked-in state, i.e. people with severe paralysis and communication problems. The main questions it aims to answer are efficient and stable control of Brain-Computer interface (BCI) functions for communication with attempted hand movements and operation of a keyword-based speech BCI. Participants will be implanted with four electrode grids, with in total 128 electrodes, on the surface of the brain and a connector on the skull. Participation includes visits of researchers for recording and training at home, 2-3 times per week for one year. Extension of participation after one year is possible. If successful, the participant will be able to use the BCI at home independently, without the presence of a researcher.

NCT ID: NCT06094205 Recruiting - Clinical trials for Spinal Cord Injuries

Feasibility of the BrainGate2 Neural Interface System in Persons With Tetraplegia (BG-Speech-02)

BG-Speech-02
Start date: October 2024
Phase: N/A
Study type: Interventional

The goal of this study is to improve our understanding of speech production, and to translate this into medical devices called intracortical brain-computer interfaces (iBCIs) that will enable people who have lost the ability to speak fluently to communicate via a computer just by trying to speak.

NCT ID: NCT05724173 Recruiting - Clinical trials for Spinal Cord Injuries

Feasibility of the BrainGate2 Neural Interface System in Persons With Tetraplegia

BG-Speech-01
Start date: October 18, 2023
Phase: N/A
Study type: Interventional

The purpose of this study is to obtain preliminary device safety information and demonstrate proof of principle (feasibility) of the ability of people with tetraplegia to control a computer cursor and other assistive devices with their thoughts.

NCT ID: NCT05470478 Not yet recruiting - Clinical trials for Amyotrophic Lateral Sclerosis

iBCI Optimization for Veterans With Paralysis

Start date: September 1, 2024
Phase: N/A
Study type: Interventional

VA research has been advancing a high-performance brain-computer interface (BCI) to improve independence for Veterans and others living with tetraplegia or the inability to speak resulting from amyotrophic lateral sclerosis, spinal cord injury or stoke. In this project, the investigators enhance deep learning neural network decoders and multi-state gesture decoding for increased accuracy and reliability and deploy them on a battery-powered mobile BCI device for independent use of computers and touch-enabled mobile devices at home. The accuracy and usability of the mobile iBCI will be evaluated with participants already enrolled separately in the investigational clinical trial of the BrainGate neural interface.

NCT ID: NCT05444075 Not yet recruiting - Locked- in Syndrome Clinical Trials

A Method for Communication With Arabic Patients Suffering From Classic Locked- in Syndrome

Start date: August 1, 2022
Phase:
Study type: Observational

Aim of the work The aim of this study is to test an Arabic alphabet communication system designed to train physicians to communicate with Arabic-speaking patients with LIS. Subjects and methods - Place of study: Department of Neurology at Sohag university hospital - Type of study: clinical trial. - Subjects: Thirty healthy subjects from three different educational levels. Ten subjects have a preparatory education level, ten subjects with a high school education or its equivalent, and ten subjects who have a university education or are still in a university education stage. They will be collected from among patients' relatives and employees of Sohag University Hospital. Methods of the study: The method shown in the figure No. 1 is the Arabic alphabet (arranged in the traditional order) printed on double-sided cardboard, with one copy facing the person and one facing the doctor. The code will be in the case of a positive selection (the desired line or letter) by looking up or one blink, but in the case of a negative selection (not the desired line or letter), it will be by looking down or two blinks. The person will choose the letters of each word and then choose the end of the word and after selecting all the words of the sentence choose the end of the sentence. After the strategy has been taught to the subject, he or she will be asked to communicate with the physician using this way.

NCT ID: NCT05348902 Recruiting - Clinical trials for Locked-In Syndrome;Pulmonary Arteriovenous Malformation

Locked-in Syndrome Caused by Pulmonary Arteriovenous Malformation: A Case Report

Start date: October 1, 2021
Phase:
Study type: Observational

In this case, we report a case of atresia syndrome (LIS), a serious neurological disease caused by pulmonary arteriovenous fistula (PAVM). We present a previously healthy middle-aged woman who developed atresia syndrome after severe pontine infarction due to basilar artery occlusion due to undiagnosed arteriovenous malformation. This report reviewed the medical history, post-admission examination and related literature, and concluded that PAVM should be considered as the cause of implicit stroke, especially in young patients with right-to-left shunt, and should be actively treated.

NCT ID: NCT04576650 Withdrawn - Locked-in Syndrome Clinical Trials

Brain-Computer Interface Implant for Severe Communication Disability

Start date: October 2022
Phase: N/A
Study type: Interventional

Locked-In Syndrome (LIS) is a devastating condition in which a person has lost the ability to communicate due to motor impairment, while being mentally intact. For people affected by this severe communication impairment, Brain-Computer Interfaces (BCI) may be the only solution that allows these people to start a conversation, ask questions, or request assistance (i.e. self-initiated communication). To-date, spelling was accomplished at a rate of 2-3 letters per minute with a predecessor device (the Medtronic Activa PC+S). To improve BCI performance, the current protocol will use the Medtronic Summit System, which offers a rechargeable battery and improved signal quality relative to Activa PC+S. Using signals from the motor hand/arm and/or motor mouth/face area, the investigators will investigate different avenues to improve the speed of communication using the Summit System. The primary objective is to evaluate the safety of the Summit System when used to chronically record subdural electrocorticographic (ECoG) signals in a BCI for use by patients with LIS in patients' homes. The secondary objective will be to evaluate the efficacy of the Summit System as a long-term source of ECoG signals for a BCI capable of allowing participants to control alternative and augmentative communication software in patients' homes.

NCT ID: NCT04468919 Recruiting - Clinical trials for Spinal Cord Injuries

Optimizing BCI-FIT: Brain Computer Interface - Functional Implementation Toolkit

BCI-FIT
Start date: July 15, 2022
Phase: N/A
Study type: Interventional

This project adds to non-invasive BCIs for communication for adults with severe speech and physical impairments due to neurodegenerative diseases. Researchers will optimize & adapt BCI signal acquisition, signal processing, natural language processing, & clinical implementation. BCI-FIT relies on active inference and transfer learning to customize a completely adaptive intent estimation classifier to each user's multi-modality signals simultaneously. 3 specific aims are: 1. develop & evaluate methods for on-line & robust adaptation of multi-modal signal models to infer user intent; 2. develop & evaluate methods for efficient user intent inference through active querying, and 3. integrate partner & environment-supported language interaction & letter/word supplementation as input modality. The same 4 dependent variables are measured in each SA: typing speed, typing accuracy, information transfer rate (ITR), & user experience (UX) feedback. Four alternating-treatments single case experimental research designs will test hypotheses about optimizing user performance and technology performance for each aim.Tasks include copy-spelling with BCI-FIT to explore the effects of multi-modal access method configurations (SA1.3a), adaptive signal modeling (SA1.3b), & active querying (SA2.2), and story retell to examine the effects of language model enhancements. Five people with SSPI will be recruited for each study. Control participants will be recruited for experiments in SA2.2 and SA3.4. Study hypotheses are: (SA1.3a) A customized BCI-FIT configuration based on multi-modal input will improve typing accuracy on a copy-spelling task compared to the standard P300 matrix speller. (SA1.3b) Adaptive signal modeling will allow people with SSPI to typing accurately during a copy-spelling task with BCI-FIT without training a new model before each use. (SA2.2) Either of two methods of adaptive querying will improve BCI-FIT typing accuracy for users with mediocre AUC scores. (SA3.4) Language model enhancements, including a combination of partner and environmental input and word completion during typing, will improve typing performance with BCI-FIT, as measured by ITR during a story-retell task. Optimized recommendations for a multi-modal BCI for each end user will be established, based on an innovative combination of clinical expertise, user feedback, customized multi-modal sensor fusion, and reinforcement learning.

NCT ID: NCT03811301 Active, not recruiting - Clinical trials for Spinal Cord Injuries

[BrainConnexion] - Neurodevice Phase I Trial

Start date: November 21, 2017
Phase: N/A
Study type: Interventional

This study aims to evaluate the safety of a wireless implantable neurodevice microsystem in tetraplegic patients, as well as the efficacy of the electrodes for long-term recording of neural activities and the successful control of an external device.

NCT ID: NCT03567213 Recruiting - Clinical trials for Amyotrophic Lateral Sclerosis

Investigation on the Cortical Communication (CortiCom) System

CortiCom
Start date: December 14, 2021
Phase: N/A
Study type: Interventional

The CortiCom system consists of 510(k)-cleared components: platinum PMT subdural cortical electrode grids, a Blackrock Microsystems patient pedestal, and an external NeuroPort Neural Signal Processor. Up to two grids will be implanted in the brain, for a total channel count of up to 128 channels, for six months. In each participant, the grid(s) will be implanted over areas of cortex that encode speech and upper extremity movement.