Clinical Trials Logo

Leukocyte Disorder clinical trials

View clinical trials related to Leukocyte Disorder.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT02720679 Recruiting - Clinical trials for Myelodysplastic Syndromes

Investigation of the Genetics of Hematologic Diseases

Start date: June 17, 2016
Phase:
Study type: Observational [Patient Registry]

The purpose of this study is to collect and store samples and health information for current and future research to learn more about the causes and treatment of blood diseases. This is not a therapeutic or diagnostic protocol for clinical purposes. Blood, bone marrow, hair follicles, nail clippings, urine, saliva and buccal swabs, left over tissue, as well as health information will be used to study and learn about blood diseases by using genetic and/or genomic research. In general, genetic research studies specific genes of an individual; genomic research studies the complete genetic makeup of an individual. It is not known why many people have blood diseases, because not all genes causing these diseases have been found. It is also not known why some people with the same disease are sicker than others, but this may be related to their genes. By studying the genomes in individuals with blood diseases and their family members, the investigators hope to learn more about how diseases develop and respond to treatment which may provide new and better ways to diagnose and treat blood diseases. Primary Objective: - Establish a repository of DNA and cryopreserved blood cells with linked clinical information from individuals with non-malignant blood diseases and biologically-related family members, in conjunction with the existing St. Jude biorepository, to conduct genomic and functional studies to facilitate secondary objectives. Secondary Objectives: - Utilize next generation genomic sequencing technologies to Identify novel genetic alternations that associate with disease status in individuals with unexplained non-malignant blood diseases. - Use genomic approaches to identify modifier genes in individuals with defined monogenic non-malignant blood diseases. - Use genomic approaches to identify genetic variants associated with treatment outcomes and toxicities for individuals with non-malignant blood disease. - Use single cell genomics, transcriptomics, proteomics and metabolomics to investigate biomarkers for disease progression, sickle cell disease (SCD) pain events and the long-term cellular and molecular effects of hydroxyurea therapy. - Using longitudinal assessment of clinical and genetic, study the long-term outcomes and evolving genetic changes in non-malignant blood diseases. Exploratory Objectives - Determine whether analysis of select patient-derived bone marrow hematopoietic progenitor/stem (HSPC) cells or induced pluripotent stem (iPS) cells can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms. - Determine whether analysis of circulating mature blood cells and their progenitors from selected patients with suspected or proven genetic hematological disorders can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms.