Clinical Trials Logo

Leukemia, T-Cell clinical trials

View clinical trials related to Leukemia, T-Cell.

Filter by:

NCT ID: NCT00103272 Terminated - Clinical trials for Recurrent Mantle Cell Lymphoma

17-N-Allylamino-17-Demethoxygeldanamycin and Bortezomib in Treating Patients With Relapsed or Refractory Hematologic Cancer

Start date: April 2005
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of 17-N-allylamino-17-demethoxygeldanamycin and bortezomib in treating patients with relapsed or refractory hematologic cancer. Drugs used in chemotherapy, such as 17-N-allylamino-17-demethoxygeldanamycin, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving 17-N-allylamino-17-demethoxygeldanamycin together with bortezomib may kill more cancer cells.

NCT ID: NCT00098891 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

MS-275 and Isotretinoin in Treating Patients With Metastatic or Advanced Solid Tumors or Lymphomas

Start date: October 2004
Phase: Phase 1
Study type: Interventional

Phase I trial to study the effectiveness of combining MS-275 with isotretinoin in treating patients who have metastatic or advanced solid tumors or lymphomas. MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Isotretinoin may help cancer cells develop into normal cells. MS-275 may increase the effectiveness of isotretinoin by making cancer cells more sensitive to the drug. MS-275 and isotretinoin may also stop the growth of solid tumors or lymphomas by stopping blood flow to the cancer. Combining MS-275 with isotretinoin may kill more cancer cells

NCT ID: NCT00096005 Terminated - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Tanespimycin and Bortezomib in Treating Patients With Advanced Solid Tumors or Lymphomas

Start date: November 2004
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of giving tanespimycin together with bortezomib in treating patients with advanced solid tumors or lymphomas. (Accrual for lymphoma patients closed as of 11/27/09) Drugs used in chemotherapy, such as tanespimycin, work in different ways to stop cancer cells from dividing so they stop growing or die. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for their growth. It may also increase the effectiveness of tanespimycin by making cancer cells more sensitive to the drug. Combining tanespimycin with bortezomib may kill more cancer cells.

NCT ID: NCT00095381 Completed - Leukemia, T-Cell Clinical Trials

Repeat-Dose of Forodesine Hydrochloride (BCX-1777) Infusion in Patients With Advanced T-Cell Leukemia

Start date: March 2004
Phase: Phase 2
Study type: Interventional

BCX-1777 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. The Phase II trial is designed to study the effectiveness of BCX-1777 in treating patients who have recurrent or refractory advanced T-cell leukemia. Patients will receive an infusion of BCX-1777 on days 1-5. Treatment may be repeated every week for up to six courses. Patients are not required to be hospitalized for the administration of BCX-1777. Some patients may continue to receive an infusion of BCX-1777 twice a week for 6 weeks.

NCT ID: NCT00089271 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

17-DMAG in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphomas

Start date: July 2004
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of 17-DMAG in treating patients with metastatic or unresectable solid tumors or lymphomas. Drugs used in chemotherapy, such as 17-DMAG, work in different ways to stop cancer cells from dividing so they stop growing or die

NCT ID: NCT00089011 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Tacrolimus and Mycophenolate Mofetil in Preventing Graft-Versus-Host Disease in Patients Who Have Undergone Total-Body Irradiation With or Without Fludarabine Phosphate Followed by Donor Peripheral Blood Stem Cell Transplant for Hematologic Cancer

Start date: April 2004
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well tacrolimus and mycophenolate mofetil works in preventing graft-versus-host disease in patients who have undergone total-body irradiation (TBI) with or without fludarabine phosphate followed by donor peripheral blood stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening.

NCT ID: NCT00082888 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Tipifarnib in Treating Patients With Relapsed or Refractory Lymphoma

Start date: March 24, 2004
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well tipifarnib works in treating patients with relapsed or refractory non-Hodgkin's lymphoma. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Tipifarnib may be an effective treatment for non-Hodgkin's lymphoma.

NCT ID: NCT00081874 Completed - Leukemia Clinical Trials

RAD001 in Relapsed or Refractory AML, ALL, CML in Blastic-Phase, Agnogenic Myeloid Metaplasia, CLL, T-Cell Leukemia, or Mantle Cell Lymphoma

Start date: April 2004
Phase: Phase 1/Phase 2
Study type: Interventional

The goal of this clinical research study is to find the highest safe dose of RAD001 that can be given as a treatment for leukemia, mantle cell lymphoma, or myelofibrosis. Another goal is to learn how effective the dose that is found is as a treatment.

NCT ID: NCT00078858 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Mycophenolate Mofetil and Cyclosporine in Reducing Graft-Versus-Host Disease in Patients With Hematologic Malignancies or Metastatic Kidney Cancer Undergoing Donor Stem Cell Transplant

Start date: September 2003
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies whether stopping cyclosporine before mycophenolate mofetil is better at reducing the risk of life-threatening graft-versus-host disease (GVHD) than the previous approach where mycophenolate mofetil was stopped before cyclosporine. The other reason this study is being done because at the present time there are no curative therapies known outside of stem cell transplantation for these types of cancer. Because of age or underlying health status, patients may have a higher likelihood of experiencing harm from a conventional blood stem cell transplant. This study tests whether this new blood stem cell transplant method can be made safer by changing the order and length of time that immune suppressing drugs are given after transplant.

NCT ID: NCT00077155 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Cilengitide (EMD 121974) in Treating Patients With Advanced Solid Tumors or Lymphoma

Start date: December 2003
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of EMD 121974 in treating patients with solid tumors or lymphoma. Cilengitide (EMD 121974) may stop the growth of cancer cells by stopping blood flow to the cancer