View clinical trials related to Leukemia, Promyelocytic, Acute.
Filter by:This phase I trial is studying the side effects and best dose of bortezomib in treating young patients with refractory or recurrent leukemia. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for their growth.
This phase II trial is studying how well romidepsin works in treating patients with relapsed or refractory acute myeloid leukemia. Drugs used in chemotherapy, such as romidepsin, work in different ways to stop tumor cells from dividing so they stop growing or die.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. This phase I trial is studying the side effects and best dose of decitabine in treating children with relapsed or refractory acute myeloid leukemia or acute lymphoblastic leukemia
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase I/II trial to study the effectiveness of homoharringtonine in treating patients who have refractory acute promyelocytic leukemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Monoclonal antibodies can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Combining monoclonal antibody therapy with chemotherapy may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy and monoclonal antibody in treating patients who have acute promyelocytic leukemia.
The purpose of this study is to evaluate both the efficacy and toxicity of infusional arsenic trioxide in the treatment of patients with relapsed or refractory acute promyelocytic leukemia (APML). In addition, correlation between pharmacokinetic data and both therapeutic response and therapy-related toxicities will be sought.
Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Phase I trial to study the effectiveness of BMS-214662 in treating patients who have acute leukemia, myelodysplastic syndrome, or chronic myeloid leukemia in blast phase
Phase I trial to study the effectiveness of PS-341 in treating patients who have refractory or relapsed acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia in blast phase, or myelodysplastic syndrome. PS-341 may stop the growth of cancer cells by blocking the enzymes necessary for cancer cell growth
This randomized phase III trial is studying tretinoin and combination chemotherapy to see how well they work compared to tretinoin, combination chemotherapy, and arsenic trioxide in treating patients with acute promyelocytic leukemia that has not been treated previously. Drugs used in chemotherapy, such as daunorubicin, cytarabine, mercaptopurine, methotrexate, and arsenic trioxide, work in different ways to stop cancer cells from dividing so they stop growing or die. Tretinoin may help leukemia cells develop into normal white blood cells. It is not yet known which regimen is more effective for acute promyelocytic leukemia.
This research trial studies molecular genetic features in blood and tissue samples from patients with newly diagnosed acute lymphoblastic leukemia or acute promyelocytic leukemia. Studying samples of blood and tissue from patients with acute lymphoblastic leukemia or acute promyelocytic leukemia in the laboratory may help doctors identify and learn more about biomarkers related to cancer.