View clinical trials related to Leukemia, Myeloid, Chronic-Phase.
Filter by:This study will be a multicenter Phase IIIb open-label, three-cohort study of asciminib in patients with CML-CP without T315I mutation who have had at least 2 prior TKIs and CML-CP harboring the T315I mutation with at least 1 prior TKI
This is a Phase 1-2, multicenter, international, single-arm, open-label study designed to identify a recommended dose of bosutinib administered orally once daily in pediatric patients with newly diagnosed chronic phase Ph+ CML (ND CML) and pediatric patients with Ph+CML who have received at least one prior TKI therapy (R/I CML), to preliminary estimate the safety and tolerability and efficacy, and to evaluate the PK of bosutinib in this patient population.
This phase II trial studies how well Triplex vaccine works in preventing cytomegalovirus (CMV) infection in patients undergoing a hematopoietic stem cell transplantation. CMV is a virus that may be carried for life and does not cause illness in most healthy individuals. However, in people whose immune systems are lowered (such as those undergoing stem cell transplantation), CMV can reproduce and cause disease and even death. The Triplex vaccine is made up of 3 small pieces of CMV deoxyribonucleic acid (DNA) (the chemical form of genes) placed into a weakened virus called modified vaccinia Ankara (MVA) that may help produce immunity (the ability to recognize and respond to an infection) and reduce the risk of developing complications related to CMV infection.
Adult male and female patients with newly diagnosed Philadelphia chromosome positive (Ph+) and/or BCR-ABL1 positive CML can be included in the study until 3 months after diagnosis. A <4 week pretreatment with hydroxyurea is permitted. Patients treated for <6 weeks with nilotinib 300 mg BID, imatinib 400 mg QD, dasatinib 100 mg QD or without any therapy are eligible for recruitment and will be allocated to the respective cohort. All patients must provide written informed consent to be enrolled in the trial. Cohorts were designed to allow assessment of QD and BID asciminib based combinations to optimize quality of life and compliance. Patients will not be randomized. In general, cohorts will be filled consecutively. Asciminib therapy will be commenced 12 weeks after start of nilotinib, imatinib or dasatinib and after recovery of hematopoiesis or in case of no therapy so far 6 weeks after diagnosis as first line treatment. Referred patients already treated with imatinib, nilotinib or dasatinib will remain on the initial drug and will be allocated to the respective cohort.
This randomized phase II trial studies how well ruxolitinib phosphate, and bosutnib, dasatinib, imatinib or nilotinib, work in treating patients with chronic myeloid leukemia. Chronic myeloid leukemia cells produce a protein called BCR-ABL. The BCR-ABL protein helps chronic myeloid leukemia cells to grow and divide. Tyrosine kinase inhibitors, such as bosutinib, dasatinib, and nilotinib, stop the BCR-ABL protein from working, which helps to reduce the amount of chronic myeloid leukemia cells in the body. Ruxolitinib is a different type of drug that helps to stop the body from making substances called growth factors. Chronic myeloid leukemia cells need growth factors to grow and divide. The addition of ruxolitinib to the tyrosine kinase inhibitor may or may not help reduce the amount of chronic myeloid leukemia cells in the body.
This phase II trial studies how well fludarabine phosphate, cyclophosphamide, total body irradiation, and donor stem cell transplant work in treating patients with blood cancer. Drugs used in chemotherapy, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient?s immune cells and help destroy any remaining cancer cells.
This study will evaluate the proportion of subjects with chronic myeloid leukemia chronic phase that sustain major molecular response after imatinib discontinuation. To be eligible for this protocol, the subject must have received imatinib as first line regiment for at least 3 years with sustained molecular response of 4log (RM4log) or higher for one year.
This phase II trial studies how well dasatinib and venetoclax work in treating patients with Philadelphia chromosome positive or BCR-ABL1 positive early chronic phase chronic myelogenous leukemia. Dasatinib and venetoclax may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This randomized phase II trial studies the safety and how well multi-peptide cytomegalovirus (CMV)-modified vaccinia Ankara (MVA) vaccine works in reducing CMV complications in patients previously infected with CMV and are undergoing a donor hematopoietic cell transplant. CMV is a virus that may reproduce and cause disease and even death in patients with lowered immune systems, such as those undergoing a hematopoietic cell transplant. By placing 3 small pieces of CMV deoxyribonucleic acid (DNA) (the chemical form of genes) into a very safe, weakened virus called MVA, the multi-peptide CMV-MVA vaccine may be able to induce immunity (the ability to recognize and respond to an infection) to CMV. This may help to reduce both CMV complications and reduce the need for antiviral drugs in patients undergoing a donor hematopoietic cell transplant.
The purpose of this study is to characterize the efficacy of ponatinib administered in 3 starting doses (45 mg, 30 mg, and 15 mg daily) in participants with CP-CML who are resistant to prior tyrosine-kinase inhibitor (TKI) therapy or have T315I mutation, as measured by <=1 % Breakpoint Cluster Region-Abelson Transcript Level using International Scale (BCR-ABL1IS) at 12 months.