Clinical Trials Logo

Leukemia, Monocytic, Acute clinical trials

View clinical trials related to Leukemia, Monocytic, Acute.

Filter by:

NCT ID: NCT01801046 Terminated - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Donor Stem Cell Transplant in Treating Patients With High Risk Acute Myeloid Leukemia

Start date: March 6, 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects of donor stem cell transplant in treating patients with high risk acute myeloid leukemia. Giving low doses of chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells when they do not exactly match the patient's blood. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect)

NCT ID: NCT01642121 Completed - Clinical trials for Childhood Acute Monocytic Leukemia (M5b)

Studying Biomarkers in Samples From Younger Patients With Acute Myeloid Leukemia

Start date: August 2012
Phase: N/A
Study type: Observational

This laboratory study is looking into biomarkers in samples from younger patients with acute myeloid leukemia. Studying samples of bone marrow from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer

NCT ID: NCT01627041 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Decitabine, Cytarabine, and Daunorubicin Hydrochloride in Treating Patients With Acute Myeloid Leukemia

Start date: September 16, 2011
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well decitabine works when given together with daunorubicin hydrochloride and cytarabine in treating patients with acute myeloid leukemia. Drugs used in chemotherapy, such as decitabine, daunorubicin hydrochloride, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Decitabine may help daunorubicin hydrochloride and cytarabine kill more cancer cells by making them more sensitive to the drugs. It is not yet known whether low-dose decitabine is more effective than high-dose decitabine when giving together with daunorubicin hydrochloride and cytarabine in treating acute myeloid leukemia.

NCT ID: NCT01607645 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Decitabine Followed by Idarubicin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndromes

Start date: July 2012
Phase: Phase 2
Study type: Interventional

The goals of this study are to learn about the effectiveness, the side-effects, if waiting to give the idarubicin and cytarabine may change the side effects or effectiveness, and to identify factors to predict for responses to this therapy. The trial will examine combination of three chemotherapy drugs. These drugs are decitabine, idarubicin, and cytarabine.

NCT ID: NCT01555268 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Trebananib With or Without Low-Dose Cytarabine in Treating Patients With Acute Myeloid Leukemia

Start date: October 31, 2011
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and the best dose of trebananib when given together with or without low-dose cytarabine in treating patients with acute myeloid leukemia (AML). Trebananib may stop the growth of AML by blocking blood flow to the cancer. Drugs used in chemotherapy, such as cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving trebananib together with cytarabine may be an effective treatment for patients with AML.

NCT ID: NCT01550185 Terminated - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Eltrombopag Olamine in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia

Start date: May 2012
Phase: Phase 1
Study type: Interventional

The purpose of this study is to find out the highest safe dose and examine the side effects and effectiveness of eltrombopag olamine in patients with acute myeloid leukemia (AML) treated with chemotherapy that have not responded to previous therapy or have suffered a relapse

NCT ID: NCT01521936 Terminated - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Cholecalciferol in Treating Patients With Acute Myeloid Leukemia Undergoing Intensive Induction Chemotherapy

Start date: December 2011
Phase: Phase 2
Study type: Interventional

This partially randomized phase II trial studies the side effects and best way to give and best dose of cholecalciferol in treating patients with acute myeloid leukemia (AML) undergoing intensive induction chemotherapy. Cholecalciferol may help improve the outcome of patients with AML undergoing intensive chemotherapy

NCT ID: NCT01361464 Completed - Clinical trials for Secondary Acute Myeloid Leukemia

Tipifarnib in Treating Older Patients With Acute Myeloid Leukemia

Start date: May 2011
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well tipifarnib works in treating older patients with acute myeloid leukemia. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01349972 Completed - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Alvocidib, Cytarabine, and Mitoxantrone Hydrochloride or Cytarabine and Daunorubicin Hydrochloride in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

Start date: April 2011
Phase: Phase 2
Study type: Interventional

This randomized phase II trial is studying how alvocidib, cytarabine, and mitoxantrone hydrochloride work compared to cytarabine and daunorubicin hydrochloride in treating patients with newly diagnosed acute myeloid leukemia. Alvocidib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cytarabine, mitoxantrone hydrochloride, and daunorubicin hydrochloride work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet known whether giving alvocidib, cytarabine, and mitoxantrone hydrochloride is more effective than giving cytarabine and daunorubicin hydrochloride in treating patients with acute myeloid leukemia.

NCT ID: NCT01342887 Terminated - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Cyclosporine, Pravastatin Sodium, Etoposide, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

Start date: April 2011
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of etoposide and mitoxantrone hydrochloride when given together with cyclosporine and pravastatin sodium and to see how well they work in treating patients with relapsed or refractory acute myeloid leukemia (AML). Cyclosporine may inhibit efflux of cancer drugs out of cancer cells and may thereby improve chemotherapy treatment for AML. Pravastatin sodium may stop the growth of cancer cells by blocking some of the nutrients needed for cell growth. Drugs used in chemotherapy, such as etoposide and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving cyclosporine together with pravastatin sodium, etoposide, and mitoxantrone hydrochloride may kill more cancer cells