View clinical trials related to Leukemia-Lymphoma, Adult T-Cell.
Filter by:This phase I trial is studying the side effects and best dose of PXD101 and bortezomib in treating patients with advanced solid tumors or lymphomas. PXD101 and bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PXD101 may also cause cancer cells to look more like normal cells, and to grow and spread more slowly. Giving PXD101 together with bortezomib may kill more cancer cells.
This study will identify chemical and protein markers in the blood of people who carry the human T-lymphotropic virus type I (HTLV-I), a virus associated with various pathologies, including an increased risk in adults of a rare and aggressive cancer called adult T cell leukemia/lymphoma (ATL). The study will also examine differences in these markers before and after the onset of ATL. ATL has been reported in every area where HTLV-1 is common, including the Caribbean and parts of Japan, West Africa, the Middle East, South America, and Pacific Melanesia. Risk factors for the disease are largely unknown and seem to vary among those affected in different endemic regions. People who acquire the infection early in life are thought to be at higher risk than those who are infected later. In Japan, men seem to be at greater risk than women, but the same is not evident among the black population in the Caribbean and Brazil. Findings from this study will increase understanding of the cause of ATL and identify differences in tumor characteristics and the course of disease across geographical areas. Study subjects are drawn from among participants in eight studies of HTLV-1 carriers, including the 1) Jamaica Mother-Infant Cohort Study, 2) Jamaica Family Study, 3) Jamaica Food Handlers Study, 4) Miyazaki Cohort Study in Japan, 5) Nagasaki Cohort Study in Japan, 6) Japan Public Health Center-based Prospective Study on Cancer and Cardiovascular Disease, 7) HTLV Outcome Studies in the United States, and 8) GIPH Cohort Study in Brazil. Stored blood samples previously collected from patients in the above studies who did and did not develop ATL will be analyzed for immunologic and genetic factors.
This phase I trial is studying the best dose of 3-AP and the side effects of giving 3-AP together with gemcitabine in treating patients with advanced solid tumors or lymphoma. Drugs used in chemotherapy, such as 3-AP and gemcitabine (GEM), work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. 3-AP may help gemcitabine kill more cancer cells by making the cells more sensitive to the drug. 3-AP may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
To test the superiority of VCAP-AMP-VECP regimen over biweekly-CHOP in aggressive ATLL in terms of survival benefit.
This phase II trial is studying how well sorafenib works in treating patients with recurrent diffuse large B-cell non-Hodgkin's lymphoma. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
This clinical trial studies the side effects and best dose of giving fludarabine and total-body irradiation (TBI) together followed by a donor stem cell transplant and cyclosporine and mycophenolate mofetil in treating human immunodeficiency virus (HIV)-positive patients with or without cancer. Giving low doses of chemotherapy, such as fludarabine, and TBI before a donor bone marrow or peripheral blood stem cell transplant helps stop the growth of cancer or abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine (CSP) and mycophenolate mofetil (MMF) after the transplant may stop this from happening.
Phase I trial to study the effectiveness of combining MS-275 with isotretinoin in treating patients who have metastatic or advanced solid tumors or lymphomas. MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. Isotretinoin may help cancer cells develop into normal cells. MS-275 may increase the effectiveness of isotretinoin by making cancer cells more sensitive to the drug. MS-275 and isotretinoin may also stop the growth of solid tumors or lymphomas by stopping blood flow to the cancer. Combining MS-275 with isotretinoin may kill more cancer cells
This phase I trial is studying the side effects and best dose of 17-DMAG in treating patients with metastatic or unresectable solid tumors or lymphomas. Drugs used in chemotherapy, such as 17-DMAG, work in different ways to stop cancer cells from dividing so they stop growing or die
This phase II trial studies how well tacrolimus and mycophenolate mofetil works in preventing graft-versus-host disease in patients who have undergone total-body irradiation (TBI) with or without fludarabine phosphate followed by donor peripheral blood stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening.
This phase II trial studies how well tipifarnib works in treating patients with relapsed or refractory non-Hodgkin's lymphoma. Tipifarnib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Tipifarnib may be an effective treatment for non-Hodgkin's lymphoma.