View clinical trials related to Leukemia-Lymphoma, Adult T-Cell.
Filter by:The purpose of this Phase 1, first in human open-label study is to assess the safety and tolerability of TRX-103 in patients with hematological malignancies undergoing HLA-mismatched related or unrelated hematopoietic stem cell transplantation (HSCT). It is anticipated that up to 36 Subjects will be enrolled during a 18-24 month enrollment period. TRX-103 will be infused one time post HSCT.
The purpose of this registry study is to create a database-a collection of information-for better understanding T-cell lymphoma. Researchers will use the information from this database to learn more about how to improve outcomes for people with T-cell lymphoma.
The primary purpose of this study is to determine the safety and efficacy of novel autologous CAR-T cells in patients with hematopoietic and lymphoid malignancies.
Effective treatment options for relapsed/refractory acute myeloid leukemia (AML) and T-cell non-Hodgkin lymphoma (T-NHL) represent a significant unmet medical need. CAR T therapy has offered durable remissions and potential cures in some forms of hematologic malignancy, including B-cell acute lymphoblastic leukemia. In AML, however, CAR T approaches have been limited by the lack of suitable antigens, as most myeloid markers are shared with normal hematopoietic stem cells and targeting of these antigens by CAR T therapy leads to undesirable hematologic toxicity. Similarly, T-NHL has not yet benefited from CAR T therapy due to a lack of suitable markers. One potential therapeutic target is CD7, which is expressed normally on mature T-cells and NK-cells but is also aberrantly expressed on ~30% of acute myeloid leukemias. CAR T therapy for patients with CD7+ AML and T-NHL will potentially offer a new therapeutic option which has a chance of offering durable benefit. WU-CART-007 is a CD7-directed, genetically modified, allogeneic, fratricide-resistant chimeric antigen receptor (CAR) T-cell product for the treatment of CD7+ hematologic malignancies. These cells have two key changes from conventional, autologous CAR T-cells. First, because CD7 is present on normal T-cells including conventional CAR T products, CD7 is deleted from WU CART-007. This allows for targeting of CD7 without the risk of fratricide (killing of WU-CART-007 cells by other WU-CART-007 cells). Second, the T cell receptor alpha constant (TRAC) is also deleted. This makes WU CART 007 cells incapable of recognizing antigens other than CD7 and allows for the use of an allogeneic product without causing Graft-versus-Host-Disease (GvHD).
The purpose of this research is to investigate whether the combination of STING-dependent Adjuvants (STAVs) and dendritic cell (DC) vaccine therapies will increase the body's ability to fight aggressive relapsed or refractory leukemias.
The purpose of this study is to evaluate the outcome (survival) of Adult T-cell leukemia / lymphoma (ATL) patients who receive or not specific treatment for their hemopathy (cohort 1) and the outcome (survival) of HTLV-1 chronically infected patients with / without extra-haematological disorders (cohort 2).
This phase I trial is to find out the best dose, possible benefits and/or side effects of third-party natural killer cells in combination with mogamulizumab in treating patients with cutaneous T-cell lymphoma or adult T-cell leukemia/lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Immunotherapy with third-party natural killer cells, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Mogamulizumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Giving third-party natural killer cells in combination with mogamulizumab may kill more cancer cells.
This study will characterize the safety and clinical benefit of valemetostat tosylate in participants with relapsed/refractory peripheral T-cell lymphoma, including relapsed/refractory adult T-cell leukemia/lymphoma.
Background: T-cell lymphomas (TCLs) are rare cancers. Many types of TCLs do not develop in the lymph nodes but in places like the skin, spleen, and bone marrow. Researchers want to see if a mix of 4 drugs can help people with TCL. Objective: To test if the combination of romidepsin, CC-486 (5-azacitidine), duvelisib, and doxorubicin can be used safely in people with TCL. Eligibility: Adults 18 and older with TCL that is newly diagnosed or that returned after or did not respond to standard treatments. Design: Participants will be screened on a separate protocol. They may have a tumor biopsy. Participants will have medical histories, medicine reviews, and physical exams. Their ability to do daily activities will be assessed. They will have blood and urine tests. Participants will take duvelisib and CC-486 (5-azacitidine) by mouth. They will get romidepsin and doxorubicin by intravenous infusion. They will take the drugs for up to eight 21-day cycles. They will keep a medicine diary. Participants will have a bone marrow aspiration and/or biopsy. Bone marrow will be taken through a needle inserted in the hip. Participants will have tumor imaging scans. Some may have a brain MRI and lumbar puncture. Some may have skin assessments. Participants will give blood, saliva, and tumor samples for research. Participants will have a safety visit 30 days after treatment ends. Then they will have follow-up visits every 60 days for 6 months, then every 90 days for 2 years, and then every 6 months for 2 years. Then they will have yearly visits until their disease gets worse or they start a new treatment....
Phase 1 (dose-escalation part): Investigate the tolerability and safety of ASTX660 in patients with r/r PTCL and r/r CTCL and determine the recommended dose (RD) for the Phase 2. Phase 1 (ATLL expansion part): Evaluate the safety of ASTX660 at RD in patients with r/r ATLL. Phase 2 : Evaluate the efficacy of ASTX660 at RD in patients with r/r PTCL.