Clinical Trials Logo

Leukemia, Lymphoblastic, Acute clinical trials

View clinical trials related to Leukemia, Lymphoblastic, Acute.

Filter by:
  • Active, not recruiting  
  • Page 1

NCT ID: NCT02475707 Active, not recruiting - Clinical trials for Leukemia, Lymphoblastic (Acute)

Administration of Donor MultiTAA-Specific T Cells for ALL

STELLA
Start date: February 2016
Phase: Phase 1
Study type: Interventional

This study uses special blood cells called multiple tumor-associated antigen (TAA)-specific T cells to treat patients with acute lymphoblastic leukemia (ALL) which has come back, or may come back, or has not gone away after standard treatment, including an allogeneic hematopoietic stem cell transplant (HSCT). The investigators have previously used this sort of therapy to treat Hodgkin or non-Hodgkin lymphomas that are infected with Epstein-Barr virus (EBV). EBV is found in cancer cells of up to half of all patients with Hodgkin and non-Hodgkin lymphoma. This suggests that it may play a role in causing lymphoma. The cancer cells infected by EBV are able to hide from the body's immune system and escape being killed. The investigators previously tested whether special white blood cells (called T cells) that were trained to kill EBV-infected cells could affect these tumors, and in many patients the investigators found that giving these trained T cells caused a complete or partial response. Other cancers express specific proteins that can be targeted in the same way. The investigators have been able to infuse such tumor-targeted cells into up to 10 patients with lymphoma who do not have EBV, and seen some complete responses. Importantly, the treatment appears to be safe. Therefore, the investigators now want to test whether the investigators can direct these special T cells against other types of cancers that carry similar proteins called tumor-associated antigens (TAAs). These proteins are specific to the leukemia cell, so they either do not show up, or show up in low quantities, on normal human cells. The investigators will grow T cells from patients' stem cell donors in the laboratory in a way that will train them to recognize the tumor proteins WT1, PRAME and Survivin, which are expressed on most ALL cancer cells. The cells will be infused at least 30 days post-allogeneic HSCT. In this study, the investigators want to see whether these cells will be able to recognize and kill leukemia cells that express these antigens. These donor-derived multiTAA-specific T cells are an investigational product not yet approved by the U.S. Food and Drug Administration. The purpose of this study is to find the largest safe dose of donor-derived multiTAA-specific T cells for patients with ALL.