Clinical Trials Logo

Leukemia, Biphenotypic, Acute clinical trials

View clinical trials related to Leukemia, Biphenotypic, Acute.

Filter by:
  • Recruiting  
  • Page 1 ·  Next »

NCT ID: NCT05805605 Recruiting - Clinical trials for Myelodysplastic Syndromes

Allo HSCT Using RIC and PTCy for Hematological Diseases

Start date: May 1, 2023
Phase: Phase 2
Study type: Interventional

This is a Phase II study following subjects proceeding with our Institutional non-myeloablative cyclophosphamide/ fludarabine/total body irradiation (TBI) preparative regimen followed by a related, unrelated, or partially matched family donor stem cell infusion using post-transplant cyclophosphamide (PTCy), sirolimus and MMF GVHD prophylaxis.

NCT ID: NCT05794880 Recruiting - Leukemia Clinical Trials

MCW Alpha/Beta T-Cell and B-Cell Depletion With Targeted ATG Dosing

Start date: May 1, 2023
Phase: N/A
Study type: Interventional

This is a single arm pilot study for patients with hematologic malignancies receiving unrelated or haploidentical related mobilized peripheral stem cells (PSCs) using the CliniMACS system for alpha/beta T cell depletion plus CD19+ B cell depletion with individualized ALC-based dosing of ATG to study impact on engraftment, GVHD, and disease free survival

NCT ID: NCT05735184 Recruiting - Clinical trials for Acute Myeloid Leukemia

A Study to Investigate the Safety and Tolerability of Ziftomenib in Combination With Venetoclax/Azacitidine, Venetoclax, or 7+3 in Patients With AML

Start date: July 18, 2023
Phase: Phase 1
Study type: Interventional

This Phase 1 study will assess the safety, tolerability, and preliminary antileukemic activity of ziftomenib in combination with venetoclax and azacitidine (ven/aza), ven, and 7+3 for two different molecularly-defined arms, NPM1-m and KMT2A-r.

NCT ID: NCT05589896 Recruiting - Clinical trials for Acute Myeloid Leukemia

A First-in-Human Study of HLA-Partially to Fully Matched Allogenic Cryopreserved Deceased Donor Bone Marrow Transplantation for Patients With Hematologic Malignancies

Start date: March 30, 2024
Phase: Phase 1/Phase 2
Study type: Interventional

The goal of this clinical trial is to determine the safety and feasibility of allogeneic transplantation with bone marrow from a deceased donor in patients with acute leukemias. Patients will either receive myeloablative conditioning or reduced intensity conditioning regimen prior to the transplant. Patients will be followed for 56 days for safety endpoints and remain in follow-up for one year.

NCT ID: NCT05066958 Recruiting - Clinical trials for Acute Myeloid Leukemia

Ex-vivo Primed Memory Donor Lymphocyte Infusion to Boost Anti-viral Immunity After T-cell Depleted HSCT

Start date: September 16, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

HSCT from an allogeneic donor is the standard therapy for high-risk hematopoietic malignancies and a wide range of severe non-malignant diseases of the blood and immune system. The possibility of performing HSCT was significantly limited by the availability of donors compatible with the MHC system. However, modern ex-vivo and in vivo technologies for depletion of T lymphocytes have made it possible to improve the outcomes of HSCT from partially compatible related (haploidentical) donors. In representative groups, it was shown that the success of HSCT from haploidentical donors is not inferior to standard procedures of HSCT from HLA-compatible unrelated donors. HSCT from haploidentical donors in children associated with the deficit of the adaptive immune response, which persists up to 6 months after HSCT and can be an increased risk of death of the patient from opportunistic infections. To solve this problem, the method of infusion of low doses of donor memory T lymphocytes was introduced. This technology is based on the possibility of adoptive transfer of memory immune response to key viral pathogens from donor to recipient. Such infusions have been shown to be safe and to accelerate the recovery of the pathogen-specific immune response. The expansion of virus-specific T lymphocytes in the recipient's body depends on exposure to the relevant antigen in vivo. Thus, in the absence of contact with the viral antigen, the adoptive transfer of memory T lymphocytes is not accompanied in vivo by the expansion of virus-specific lymphocytes and does not form a circulating pool of memory T lymphocytes, that can protect the patient from infections. Therefore the investigators assume that ex-vivo priming of donor memory lymphocytes with relevant antigens can provide optimal antigenic stimulation and may solve the problem of restoring immunological reactivity in the early stages after HSCT. Technically ex-vivo primed memory T lymphocytes will be generated by short incubation of CD45RA-depleted fraction of the graft (a product of T lymphocyte depletion) with a pool of GMP-quality peptides representing a number of key proteins of the viral pathogens. The following are proposed as targeted antigens: CMV pp65, EBV EBNA-1, EBV LMP12A, Adeno AdV5 Hexon, BKV LT, BKV VP1. An infusion of donor memory lymphocytes will be performed on the day +1 after transplantation. Parameters of the assessment will be safety and efficacy (immune response by day 60 and stability (responses by day 180).

NCT ID: NCT04128501 Recruiting - Clinical trials for Acute Myeloid Leukemia

Venetoclax and Azacitidine for the Treatment of Acute Myeloid Leukemia in the Post-Transplant Setting

Start date: May 5, 2020
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well venetoclax and azacitidine work for the treatment of acute myeloid leukemia after stem cell transplantation. Venetoclax may stop the growth of cancer cells by blocking BCL-2, a protein needed for cancer cell survival. Chemotherapy drugs, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax and azacitidine after a stem cell transplant may help control high risk leukemia and prevent it from coming back after the transplant.

NCT ID: NCT04067336 Recruiting - Clinical trials for Acute Myeloid Leukemia

First in Human Study of Ziftomenib in Relapsed or Refractory Acute Myeloid Leukemia

Start date: September 12, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

This first-in-human (FIH) dose-escalation and dose-validation/expansion study will assess ziftomenib, a menin-MLL(KMT2A) inhibitor, in patients with relapsed or refractory acute myeloid leukemia (AML) as part of Phase 1. In Phase 2, assessment of ziftomenib will continue in patients with NPM1-m AML.

NCT ID: NCT04065399 Recruiting - Clinical trials for Acute Myeloid Leukemia

A Study of Revumenib in R/R Leukemias Including Those With an MLL/KMT2A Gene Rearrangement or NPM1 Mutation

AUGMENT-101
Start date: November 5, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

Phase 1 dose escalation will determine the maximum tolerated dose (MTD) and recommended Phase 2 dose (RP2D) of revumenib in participants with acute leukemia. In Phase 2, participants will be enrolled in 3 indication-specific expansion cohorts to determine the efficacy, short- and long-term safety, and tolerability of revumenib.

NCT ID: NCT04047641 Recruiting - Clinical trials for Acute Myeloid Leukemia

Cladribine, Idarubicin, Cytarabine, and Quizartinib in Treating Patients With Newly Diagnosed, Relapsed, or Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome

Start date: October 22, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and how well cladribine, idarubicin, cytarabine, and quizartinib work in treating patients with acute myeloid leukemia or high-risk myelodysplastic syndrome that is newly diagnosed, has come back (relapsed), or does not respond to treatment (refractory). Drugs used in chemotherapy, such as cladribine, idarubicin, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Quizartinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving quizartinib with cladribine, idarubicin, and cytarabine may help to control acute myeloid leukemia or high-risk myelodysplastic syndrome.

NCT ID: NCT03779854 Recruiting - Clinical trials for Acute Lymphoblastic Leukemia

Naive T Cell Depletion for Preventing Chronic Graft-versus-Host Disease in Children and Young Adults With Blood Cancers Undergoing Donor Stem Cell Transplant

Start date: August 29, 2019
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body's normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.