Lateral Epicondylitis Clinical Trial
— ALLO-ASCOfficial title:
Treatment of Tendon Injury Using Allogenic Adipose-derived Mesenchymal Stem Cells(ALLO-ASC):A Pilot Study
Verified date | February 2022 |
Source | Seoul National University Hospital |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Main purpose of this study is to evaluate efficacy and safety of allogenic adipose-derived mesenchymal stem cells(ALLO-ASC) in treatment of tendon injury. ALLO-ASC will be administrated to the patients with lateral epicondylitis by ultrasonographic guided injection.
Status | Completed |
Enrollment | 12 |
Est. completion date | April 2018 |
Est. primary completion date | July 2016 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 19 Years to 90 Years |
Eligibility | Inclusion Criteria: - clinically diagnosed as lateral epicondylitis (tennis elbow) - recurrent pain in spite of conservative treatment such as physical therapy, medication, steroid injection - symptom duration is over 6 months - defect in common extensor tendon can be observed under ultrasound - patient that can understand the clinical trials Exclusion Criteria: - patient that underwent other injection treatment within 6 weeks - some associated diseases (such as arthritis, synovitis, entrapment of related nerve, radiculopathy to the target lesion, generalized pain syndrome, rheumatoid arthritis, pregnancy, impaired sensibility, paralysis, history of allergic or hypersensitive reaction to bovine-derived proteins or fibrin glue) - patient that enrolled other clinical trials within 30 days - history of drug/alcohol addiction, habitual smoker |
Country | Name | City | State |
---|---|---|---|
Korea, Republic of | Seoul National University College of Medicine | Seoul |
Lead Sponsor | Collaborator |
---|---|
Seoul National University Hospital | Medical Research Collaborating Center, Seoul, Korea |
Korea, Republic of,
Coombes BK, Bisset L, Vicenzino B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials. Lancet. 2010 Nov 20;376(9754):1751-67. doi: 10.1016/S0140-6736(10)61160-9. Epub 2010 Oct 21. Review. — View Citation
Johnson GW, Cadwallader K, Scheffel SB, Epperly TD. Treatment of lateral epicondylitis. Am Fam Physician. 2007 Sep 15;76(6):843-8. Review. — View Citation
Kon E, Filardo G, Delcogliano M, Presti ML, Russo A, Bondi A, Di Martino A, Cenacchi A, Fornasari PM, Marcacci M. Platelet-rich plasma: new clinical application: a pilot study for treatment of jumper's knee. Injury. 2009 Jun;40(6):598-603. doi: 10.1016/j.injury.2008.11.026. Epub 2009 Apr 19. — View Citation
Maffulli N, Longo UG, Denaro V. Novel approaches for the management of tendinopathy. J Bone Joint Surg Am. 2010 Nov 3;92(15):2604-13. doi: 10.2106/JBJS.I.01744. Review. — View Citation
Mishra A, Pavelko T. Treatment of chronic elbow tendinosis with buffered platelet-rich plasma. Am J Sports Med. 2006 Nov;34(11):1774-8. Epub 2006 May 30. — View Citation
Price R, Sinclair H, Heinrich I, Gibson T. Local injection treatment of tennis elbow--hydrocortisone, triamcinolone and lignocaine compared. Br J Rheumatol. 1991 Feb;30(1):39-44. — View Citation
Sánchez M, Anitua E, Azofra J, Andía I, Padilla S, Mujika I. Comparison of surgically repaired Achilles tendon tears using platelet-rich fibrin matrices. Am J Sports Med. 2007 Feb;35(2):245-51. Epub 2006 Nov 12. — View Citation
Sánchez M, Azofra J, Anitua E, Andía I, Padilla S, Santisteban J, Mujika I. Plasma rich in growth factors to treat an articular cartilage avulsion: a case report. Med Sci Sports Exerc. 2003 Oct;35(10):1648-52. — View Citation
Slater M, Patava J, Kingham K, Mason RS. Involvement of platelets in stimulating osteogenic activity. J Orthop Res. 1995 Sep;13(5):655-63. — View Citation
Sölveborn SA, Buch F, Mallmin H, Adalberth G. Cortisone injection with anesthetic additives for radial epicondylalgia (tennis elbow). Clin Orthop Relat Res. 1995 Jul;(316):99-105. — View Citation
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change From Baseline in Visual Analog Scale (VAS) at 6 and 12 Weeks | Self reported pain intensity during activity will be evaluated by visual analogue scale (0 = no pain, 10 = pain as bad as can be), higher scores meaning worse outcome. | Baseline, 6 weeks, 12 weeks after intervention | |
Secondary | Modified Mayo Clinic Performance Index for the Elbow | The Modified Mayo clinic performance index for the elbow measures pain, motion, stability, and daily functions. (0 to 100) Higher score means better function. | Baseline, 6 weeks, 12 weeks after the intervention | |
Secondary | Defect Area of Tendon by Ultrasonography in Long Axis | Defect areas were measured as the largest defect of the common extensor tendon. Higher value means larger defect area.
With the patient supine position with the elbow in 30' flexion and full pronation, the cephalic end of the ultrasound transducer was placed on the lateral epicondyle and the long axis of the transducer was aligned with the long axis of radius. The alignment of the transducer and radius was achieved by visualizing contours of the bony structures. Multiple cross-sectional images were saved by shifting the transducer medio-laterally by 2mm at a time. Acquiring images were repeated three times. Among the saved images, one image showing the largest defect were selected for every patients at every time points. Manual measurements of the defect area were conducted by tracking the perimeter using ImageJ 1.48 software (National Institutes of Health, http://imagej.nih.gov/ij/) and were repeated three times by two examiners in random orders and then, averaged. |
Baseline, 6 weeks, and 12 weeks after the intervention | |
Secondary | Defect Area of Tendon by Ultrasonography in Short Axis | Defect areas were measured as the largest defect of the common extensor tendon. Higher value means larger defect area.
With the patient supine position with the elbow in 30' flexion and full pronation, the transducer was placed on the proximal forearm just distal to the radial head, aligning the long axis of the transducer perpendicular to the long axis of the forearm. Viewing the round radius at the horizontal center, the transducer was shifted proximally by 2mm and multiple images were saved after the transducer passed the radial head until it slid over the prominence. Acquiring images were repeated three times. Among the saved images, one image showing the largest defect were selected for every patients at every time points. Manual measurements of the defect area were conducted by tracking the perimeter using ImageJ 1.48 software (National Institutes of Health, http://imagej.nih.gov/ij/) and were repeated three times by two examiners in random orders and then, averaged. |
Baseline, 6 weeks, and 12 weeks after the intervention |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT02308514 -
Does Adding Cryostimulation to Conservative Care Help in Managing Chronic Lateral Epicondylitis? a Pilote Study
|
N/A | |
Completed |
NCT02596659 -
Effectiveness of Radial Extracorporeal Shockwave Therapy on Tennis Elbow
|
N/A | |
Completed |
NCT00674622 -
Prolotherapy for the Treatment of Chronic Lateral Epicondylitis
|
Phase 2/Phase 3 | |
Completed |
NCT06206109 -
The Effect of Tendon Tears on Lateral Epicondylitis
|
||
Completed |
NCT06301152 -
Lateral Epicondylitis Treatment High Intensive Laser Therapy and Extracorporeal Shock Wave Therapy
|
N/A | |
Not yet recruiting |
NCT04382144 -
Levobupivacaine Versus Liposomal Bupivacaine (Exparel®) for Treatment of Pain and Disability in Lateral Epicondylitis
|
Phase 4 | |
Recruiting |
NCT03863847 -
A Neurofeedback Treatment for Chronic Musculoskeletal Pain
|
N/A | |
Recruiting |
NCT05648032 -
PLT and Steroid in Lateral Epicondylopathy and Supraspinatus Calcific Tendinopathy
|
Phase 3 | |
Completed |
NCT06300749 -
Effectiveness of Chiropractic Cervical Manipulation in Lateral Epicondylitis
|
N/A | |
Completed |
NCT00794976 -
Dexamethasone Iontophoretic Patch for the Treatment of Pain Associated With Lateral Epicondylitis
|
Phase 2 | |
Completed |
NCT00888225 -
Tennis Elbow Trial
|
N/A | |
Completed |
NCT06087081 -
Mills Manipulation and Mulligan PRP Affect Pain, Grip Strength and Function on Lateral Epicondylitis
|
N/A | |
Completed |
NCT05602571 -
The Effectiveness of the Combination of PRP and ESWT in Lateral Epicondylitis
|
N/A | |
Completed |
NCT05566418 -
Immediate and Longterm Effects of Mulligan Mobilization With and Without Myofascial Release on Pain,Grip Strength and Function in Patients With Lateral Epicondylitis
|
N/A | |
Not yet recruiting |
NCT03279796 -
Treatment of Tendon Disease Using Autologous Adipose-derived Mesenchymal Stem Cells
|
Phase 2 | |
Completed |
NCT04687943 -
Comparison of PELOID Therapy and Kinesio Tape Effectiveness in Patients With Lateral Epicondylitis
|
||
Recruiting |
NCT05947968 -
Scapular PNF Versus Shoulder Strengthening Exercises in Patients With Lateral Epicondylitis.
|
N/A | |
Active, not recruiting |
NCT06438328 -
Effectiveness of Scapular Muscle Training in Improving Grip Strength Among Lateral Epicondylitis Patients
|
N/A | |
Completed |
NCT06317545 -
Effects of Nerchal Exercises on Lateral Epicondylitis.
|
N/A | |
Completed |
NCT05070559 -
Active Release Technique and Graston Technique in Patients With Lateral Epicondylitis
|
N/A |