Clinical Trials Logo

Clinical Trial Summary

Some carbohydrates, complex sugars, which are found in grains, fruit and vegetables, cannot be digested by humans. When eaten they pass through the small bowel to the large bowel, or colon. Some bacteria that live in the colon are able to digest these carbohydrates, and use them as an energy source. This releases energy that humans can absorb, and may have other effects on health as well. The process also releases gases such as hydrogen and methane into the colon, which will eventually be released as flatulence.

There is some evidence in animals, and humans, that changing the carbohydrate content of the diet may increase the numbers of bacteria in the colon that can use this energy source. Recent work has looked at how changes in colon bacteria and carbohydrate in the diet affect transit, the speed at which food and stool moves through the stomach and bowels.

This undergraduate project will use techniques in Magnetic Resonance Imaging developed in Nottingham to investigate how a prolonged change in dietary carbohydrate might affect speed of transit through the bowel and gas production in the colon, and whether there is any immune reaction to the carbohydrate from the bowel wall.


Clinical Trial Description

Oligofructose (OF) is a fructose- based oligosaccharide and defined in the European Union as a dietary fibre. Enzymatically derived from the longer chain inulin in chicory, it is commonly used in processed food to improve mouth feel in fat-free products. OF is poorly digested and absorbed in the small bowel so passes to the colon where it is fermented by the bacteria usually resident in the colon, termed the microbiota. This process produces gases such as hydrogen and sometimes methane, and short-chain fatty acids (SCFAs) which have a variety of roles including nutrition to colonocytes, immunological effects and modulation of intestinal motility. Its presence in the colon alters the composition of the microbiota, with reported potential benefits to health, leading to its description as a 'prebiotic'.

Recently, however, such poorly digested carbohydrates grouped together by the term FODMAP (fermentable oligo-, di-, mono-saccharides and polyols) have been proposed to exacerbate symptoms of irritable bowel syndrome (IBS) such as abdominal discomfort and bloating. Dietary exclusion of foods containing FODMAPs, such as wheat, dairy and certain fruit and vegetables, has been proposed as a treatment for IBS, with some evidence to support this. FODMAPs are thought to induce symptoms either by drawing water into the small bowel by osmosis, or through gaseous distension of the large bowel or a combination of these along with metabolite effects on motility.

The Nottingham GI MRI group has been at the forefront of elucidating the actual effects of FODMAPs on gastrointestinal (GI) physiology. We have published techniques to measure small bowel water content, colonic volume and gas volume and whole gut transit time. We have recently demonstrated that a single, large (40g) dose of inulin leads to an increase in colonic volume, mainly through an increase in colonic gas. Such a dose is beyond the usual range of dietary variation, however. Last year we piloted a model more similar to dietary practice. Participants supplemented their usual diet with 5g OF twice daily for a week. The most striking result was an 18% increase in fasting colonic volume. This could not be explained by changes in colonic gas and may represent proliferation, and increased mass, of the microbiota. That study was an open label, uncontrolled case series so we now wish to test the hypothesis in a double-blind, randomised controlled trial. For explanatory purposes we will also measure whole gut transit, colonic gas volume and hydrogen and methane expired in the breath. For exploratory purposes we will also collect stool and urine samples to allow assessment of the effect on microbiota and their metabolic output. ;


Study Design

Allocation: Randomized, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Caregiver, Investigator, Outcomes Assessor), Primary Purpose: Basic Science


Related Conditions & MeSH terms


NCT number NCT02259465
Study type Interventional
Source University of Nottingham
Contact
Status Completed
Phase N/A
Start date September 2014
Completion date December 2014

See also
  Status Clinical Trial Phase
Completed NCT03720314 - Microbiota Profiling in IBS
Recruiting NCT06166563 - Exercise, Irritable Bowel Syndrome and Fibromyalgia N/A
Completed NCT05213910 - Study of a Management Strategy of Functional Bowel Disordes Related to Irritable Bowel Syndrome (IBS) With a Mixture of 8 Microbiotic Strains N/A
Recruiting NCT05985018 - Traditional Dietary Advice Vs. Mediterranean Diet in IBS N/A
Completed NCT04486469 - Efficacy of Physiotherapy Techniques on Irritable Bowel Syndrome (IBS). Pilot Study. N/A
Completed NCT04656730 - Effect of STW5 (Iberogast ®) and STW5-II (Iberogast N®) on Transit and Tolerance of Intestinal Gas Phase 4
Completed NCT04145856 - Combination of Alverine-simeticone and i3.1 Probiotic in IBS-D and IBS-M in Mexico Phase 4
Recruiting NCT04138225 - The Ecological Role of Yeasts in the Human Gut
Active, not recruiting NCT03586622 - One Year Home Monitoring and Treatment of IBS Patients N/A
Completed NCT05207618 - Utility of the Administration of Chesnut and Quebracho Extract for Irritable Bowel Syndrome Diarrhea Predominant N/A
Not yet recruiting NCT06369753 - Visible Abdominal Distension N/A
Not yet recruiting NCT05157867 - In Vivo Effects of Amylase Trypsin Inhibitors N/A
Not yet recruiting NCT05100719 - The Role of Irritable Bowel Syndrome in Lactose Intolerance (LION) N/A
Recruiting NCT05001997 - Effects of Lactose-free Dairy Products on Athletes With Irritable Bowel Syndrome N/A
Recruiting NCT02953171 - Probiotics in the Treatment of Irritable Bowel Syndrome N/A
Completed NCT02977975 - Lacto-fermented Sauerkraut in the Treatment of Irritable Bowel Syndrome N/A
Completed NCT03266068 - Epidemiology and Pathophysiology of Post-Infectious Functional GI Disorders
Completed NCT02980406 - The Role of FODMAPs in Upper GI Effects, Colonic Motor Activity and Gut-brain Signaling at the Behavioral Level N/A
Completed NCT03318614 - Bifidobacterium Infantis M-63 Improves Mental Health in Irritable Bowel Syndrome Developed After a Major Flood Disaster Phase 2/Phase 3
Recruiting NCT02242175 - Efficacy of Hydrogen Breath Test in the Patients With Irritable Bowel Syndrome N/A