Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT03957057
Other study ID # 0120-117/2019/5
Secondary ID
Status Completed
Phase Phase 3
First received
Last updated
Start date September 10, 2020
Est. completion date June 15, 2022

Study information

Verified date June 2022
Source University Medical Centre Ljubljana
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Anemia affects between 20 and 50 % of women in the postpartum period. It is associated with several adverse health consequences, such as impaired physical work capacity, deficits in cognitive function and mood, reduced immune function and reduced duration of breastfeeding. Postpartum anemia has also been shown to be a major risk factor for postpartum depression and to significantly disrupt maternal-infant interactions. Iron deficiency is the principal cause of anemia after delivery. Oral iron supplementation with ferrous sulfate has been considered the standard of care with blood transfusion reserved for more severe or symptomatic cases. In the last decade, two new intravenous iron compounds have been registered for clinical use: ferric carboxymaltose (Iroprem®) and iron isomaltoside (Monofer®). No study to date compared efficacy of iron carboxymaltose to iron isomaltoside for treatment of postpartum anemia. The objective of the study is to compare efficacy of intravenous iron carboxymaltose to intravenous iron isomaltoside and oral iron sulphate for treatment of postpartum anemia.


Description:

RATIONALE Anemia affects between 20 and 50 % of women in the postpartum period. It is associated with several adverse health consequences, such as impaired physical work capacity, deficits in cognitive function and mood, reduced immune function and reduced duration of breastfeeding. Postpartum anemia has also been shown to be a major risk factor for postpartum depression and to significantly disrupt maternal-infant interactions. Iron deficiency is the principal cause of anemia after delivery. Oral iron supplementation with ferrous sulfate has been considered the standard of care with blood transfusion reserved for more severe or symptomatic cases. However, efficacy of oral iron is limited by gastrointestinal side effects, patient non-adherence as well as prolonged time required to treat anemia and replenish body iron stores. Blood transfusion, on the other hand, is associated with several hazards, including transfusion of the wrong blood type, infection, anaphylaxis and lung injury. In last decades, modern formulations of intravenous iron have emerged as safe and effective alternatives to oral iron supplementation for iron deficiency anemia management outside pregnancy. Several studies have also evaluated efficacy of intravenous iron preparations for treatment of postpartum anemia. Westad et al. reported no significant difference in hemoglobin levels at 4, 8 and 12 weeks postpartum in women receiving intravenous iron sucrose (Venofer®) compared to those receiving oral ferrous sulphate, whereas the total fatigue score was significantly improved in the intravenous iron supplementation group at weeks 4, 8 and 12. In addition, mean serum ferritin value after 4 weeks was significantly higher in the iron sucrose group. Several other authors came to similar conclusion, intravenous iron sucrose and oral ferrous sulphate were both effective in correcting peripartum anemia, although intravenous iron restored stores faster than oral iron. In the last decade, two new intravenous iron compounds have been registered for clinical use: ferric carboxymaltose (Iroprem®) and iron isomaltoside (Monofer®). These treatments were designed to be administered in large doses by rapid intravenous injection. They have been demonstrated to be more efficacious than intravenous iron sucrose in patients with inflammatory bowel disease and in patients with chronic kidney disease. In the postpartum period, ferric carboxymaltose has been compared to oral iron supplements in four randomized trials. All reported a faster rise in hemoglobin levels compared to oral ferrous sulphate. Pfenninger et al. compared efficacy of intravenous ferric carboxymaltose with iron sucrose for the treatment of postpartum anemia in a retrospective cohort study. Both drugs offered rapid normalization of hemoglobin levels after delivery with no difference in mean daily hemoglobin increase between the groups up to 8 days after treatment. Only one randomized study to date compared intravenous ferric carboxylase to intravenous iron sucrose and oral ferrous sulphate for treatment of postpartum anemia. Radhod et al. found a significantly faster rise in hemoglobin and ferritin levels with ferric carboxylase compared to iron sucrose and ferrous sulphate in Indian women presenting with anemia after delivery. This study, like most randomized trials on efficacy of various iron treatments, focused solely on hematological biomarkers. However, iron deficiency, even without anemia, contributes significantly to fatigue experienced by women in the puerperium, and these women may benefit from iron supplementation as well. Data on patient reported outcomes associated with different iron treatments are, therefore, very much needed. Holm et al. compared the effects of single-dose intravenous iron isomaltoside to oral iron supplementation on physical fatigue in women after postpartum haemorrhage. They found significant reduction in fatigue within 12 weeks postpartum in women who received iron isomaltoside. Iron isomaltoside treatment was also associated with improved haematological and iron parameters compared to oral ferrous sulfate. No study to date, however, compared efficacy of iron carboxymaltose to iron isomaltoside for treatment of postpartum anemia. The only head-to-head comparison between these two compounds merely examined economic aspects of each treatment, showing potential reduction of costs associated with the use of iron isomaltoside vs. iron carboxymaltose. OBJECTIVE The objective of the study is to compare efficacy of intravenous iron carboxymaltose to intravenous iron isomaltoside and oral iron sulphate for treatment of postpartum anemia. METHODS Single-center, randomized, open-label trial. After signed informed consent patients will be allocated randomly in a 1:1:1 fashion into one of three groups: 1. Iron carboxymaltose group. Total dose of intravenous ferric carboxymaltose (Iroprem®) needed to correct anemia and replenish iron stores will be calculated using the Ganzoni formula modified to include adjustment for baseline iron status: prepregnancy weight in kilograms X (15-baseline Hb) X 2.4 + 500. Fifteen is the target Hb in g/dL, 2.4 is a unit less conversion constant and 500 is the target iron stores in mg. The maximal dose administered in a single day will not exceed 15 mg/kg (current weight) or 1000 mg (for participants with body weight > 67 kg). If total calculated dose will exceed 15 mg/kg or 1000 mg, subsequent doses will be administered weekly until the total calculated dose will be reached. 2. Iron isomaltoside group. Total dose of intravenous iron isomaltoside (Monofer®) needed to correct anemia and replenish iron stores will be calculated as described above. The maximal dose administered in a single day will not exceed 20 mg/kg (current weight) or 1500 mg (for participants with body weight > 75 kg). If total calculated dose will exceed 20 mg/kg or 1500 mg, subsequent doses will be administered weekly until the total calculated dose will be reached. 3. Iron sulphate group. Participants will receive oral ferrous sulphate (Tardyfer®) 160 mg daily for 6 weeks with instruction to take two tablets by mouth once daily 1 hour before meal. They will receive no additional iron supplementation. The investigators will monitor blood pressure and record adverse events in all patients before and after administration of IV iron and ask all patients to report any untoward medical event at its onset.


Recruitment information / eligibility

Status Completed
Enrollment 300
Est. completion date June 15, 2022
Est. primary completion date April 30, 2022
Accepts healthy volunteers No
Gender Female
Age group 18 Years to 50 Years
Eligibility Inclusion Criteria: - Postpartum patients with a hemoglobin level between 70 g/L and 100 g/L within 48 hours after delivery. Exclusion Criteria: - Contraindications for any of the study drugs. - Anemia due to causes other than iron deficiency. - Signs of systemic infection. - Renal or hepatic dysfunction. - Depression during pregnancy or pre-existing depressive disorders.

Study Design


Intervention

Drug:
Iron Carboxymaltose
Intravenous iron carboxymaltose application
Iron Isomaltoside
Inravenous iron isomaltoside application
Ferrous sulphate
Oral ferrous sulphate application

Locations

Country Name City State
Slovenia UMC Ljubljana Ljubljana

Sponsors (1)

Lead Sponsor Collaborator
University Medical Centre Ljubljana

Country where clinical trial is conducted

Slovenia, 

Outcome

Type Measure Description Time frame Safety issue
Primary Multidimensional Fatigue Inventory (MFI) score Multidimensional Fatigue Inventory (MFI) score at 6 weeks postpartum. The MFI is a 20-item self-report instrument designed to measure fatigue. Items are scored 1-5, with 10 positively phrased items reverse scored (this concerns following items: 2, 5, 9, 10, 13, 14, 16, 17, 18, 19). For each of the 5 scales (general fatigue, physical fatigue, reduced activity, reduced motivation, and mental fatigue) a total score is calculated by summation of the scores of the individual items. Scores can range from the minimum of 4 to the maximum of 20. Higher scores indicate a higher degree of fatigue. 6 weeks postpartum
Secondary Edinburgh Postnatal Depression Scale (EPDS) score Edinburgh Postnatal Depression Scale (EPDS) score at 6 weeks postpartum. EPDA is a 10-item questionnaire which evaluates different depression symptoms, such as guilt feeling, sleep disturbance, low energy, anhedonia, and suicidal ideation. Overall assessment is done by total score, which is determined by adding together the scores for each of the 10 items. Each answer is given a score of 0 to 3 . The maximum score is 30. Higher scores indicate more depressive symptoms. A score of more than 10 suggests minor or major depression may be present. 6 weeks postpartum
Secondary hemoglobin Mean hemoglobin level at 6 weeks postpartum 6 weeks postpartum
Secondary hemoglobin level > 120 g/L Proportion of participants with hemoglobin level > 120 g/L at 6 weeks postpartum 6 weeks postpartum
Secondary ferritin level > 50 mcg/L at 6 weeks postpartum Proportion of participants with ferritin level > 50 mcg/L 6 weeks postpartum
Secondary reticulocyte count Mean reticulocyte count 6 weeks postpartum
Secondary ferritin level Mean ferritin level 6 weeks postpartum
Secondary transferrin level Mean transferrin level 6 weeks postpartum
Secondary Costs of medication used in each study arm Costs of treatments 6 weeks postpartum
Secondary Compliance - proportion of participants receiving treatments as recommended Compliance with oral ferrous sulphate treatment 6 weeks postpartum
Secondary Side effects - proportion of participants reporting side effects of treatments Side effects of all three study treatments in mothers (e.g. constipation, headache, infusion site burning) and infants (e.g. constipation, erythema, diarrhea, abdominal pain, upper respiratory tract infection) 6 weeks postpartum
See also
  Status Clinical Trial Phase
Completed NCT04949165 - Bloodsafe Ghana- Iron and Nutritional Counseling Strategy Pilot Study N/A
Terminated NCT03218384 - Ferric Carboxymaltose to Improve Skeletal Muscle Metabolism in Heart Failure Patients With Functional Iron Deficiency Phase 2
Active, not recruiting NCT03516734 - Iron-fortified Lentils to Improve Iron (Fe) Status in Bangladesh N/A
Completed NCT03572010 - Stable Iron Isotope Method in HIV+ and HIV- Children N/A
Active, not recruiting NCT03703726 - Iron Absorption From Fortified Extruded Rice Using Different Extruding Temperatures. N/A
Recruiting NCT05217836 - Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
Not yet recruiting NCT05395468 - Diagnosis of Iron Deficiency by Artificial Intelligence Analysis of Eye Photography.
Withdrawn NCT03800446 - Validation of a Point-of-care Device Measuring Ferritin With Capillary Blood N/A
Not yet recruiting NCT03353662 - Sub Regional Micronutrient Survey in Ethiopia
Completed NCT03819530 - Child of Urban Poverty Iron Project (CUPIP) - A Pilot Study N/A
Recruiting NCT04144790 - Impact of Iron Supplementation Treatment on Brain Iron Concentrations
Completed NCT03642223 - Central and Peripheral Adiposity and Iron Absorption N/A
Not yet recruiting NCT05407987 - Ferric Derisomaltose and Outcomes in the Recovery of Gynecologic Oncology: ERAS (Enhanced Recovery After Surgery) Phase 3
Withdrawn NCT03873584 - Improvement of Fatigue Symptoms in the Iron Deficiency Anemia With Iron Succinylate Therapy
Enrolling by invitation NCT03897673 - Optimizing Benefits While Reducing Risks of Iron in Malaria-endemic Areas N/A
Completed NCT04359368 - Characteristics of Patients With Hypersensitivity Reactions to Intravenous Iron Infusions
Active, not recruiting NCT04778072 - A Clinical Study on Adherence and Efficacy of Different Doses of Active Iron in Treatment Resistant Subjects N/A
Enrolling by invitation NCT05750940 - Oxidative Skeletal Muscle Metabolism in Chronic Heart Failure Patients With and Without Iron Deficiency
Recruiting NCT05126901 - Evaluate the Safety and Efficacy of Ferric Maltol Oral Suspension vs. Ferrous Sulfate Oral Liquid in Children and Adolescents Aged 2 to 17 Years With Iron-deficiency Anaemia, With a Single Arm Study in Infants Aged 1 Month to Less Than 2 Years Phase 3
Recruiting NCT05609318 - Imaging Intravenous Iron