Clinical Trials Logo

Clinical Trial Summary

Randomised controlled trial evaluating active irrigation using IRRAflow device in patients with intraventricular hemorrhages (IVH). Patients will be randomized in a 1:1 fashion to IRRAflow active irrigation and aspiration compared to standard passive external ventricular drainage. The investigators hypothesize that active irrigation using the IRRAflow system will reduce the occlusion rates of the ventricular drain. Further, reduce the rate of catheter related infection and reduce time needed for clearance of blood from the intraventricular space compared with passive drainage alone. Further more, reduce treatment time, patient length of stay, and overall treatment cost when compared with passive drainage.


Clinical Trial Description

Intraventricular extension of hemorrhage (IVH) is a particularly poor prognostic sign, with expected mortality between 50% and 80%. IVH is a significant and independent contributor to morbidity and mortality, yet therapy directed at ameliorating intraventricular clot has been limited. Conventional therapy centers on managing hypertension and intracranial pressure while correcting coagulopathy and avoiding complications such as rebleeding and hydrocephalus. Surgical therapy alone has not changed the natural history of the disease significantly. Although ventriculostomy appears to be effective in controlling ICP, this technique does little to reduce morbidity and does not address the inflammatory process. The severity of communicating hydrocephalus appears to be related to IVH volume and the duration of exposure of CSF to clotted blood. Management of hemorrhagic patients is typically orchestrated by neurosurgeons and neuro-intensivists. Comprehensive care should include surveillance and monitoring of intracranial pressure (ICP), Cerebral Perfusion Pressure (CPP), and hemodynamic function. Furthermore, prevention of infection, complications of immobility through positioning and mobilization within physiological tolerance play an important role in optimizing outcomes after intracerebral hemorrhage (ICH). There are multiple approaches to facilitating Cerebrospinal Fluid (CSF) drainage and intracranial pressure (ICP) monitoring. Routinely, ICP is measured by use of devices inserted into the brain parenchyma or cerebral ventricles. A Ventricular Catheter (VC) inserted into the lateral ventricle allows for drainage of CSF to help reduce ICP. The IRRAflow system performs active, controlled fluid exchange, based on the notion that it is faster to wash out IVH, compared to gravity drainage alone. IRRAflow combines periodic, controlled irrigation and aspiration of the catheter probe with neutral physiological fluids. The continuous perfusion cleans the entire inner catheter probe's surface while the fluid movement helps to disrupt potential clot or bacteria colony formation on the catheter probe's intracranial external surface, thereby eliminating the underlying reasons for the problems associated with passive drainage: blockage and infection. Furthermore, IRRAflow perfusion is combined with continuous ICP monitoring that includes safety alarms. Contrary, with passive drainage, such as today's standard of care, the external ventricular drain (EVD), is inherently inefficient because of its inability to overcome blood clot adhesion. As a result, EVD's generally need a lot of treatment time for the evacuation of a clinically significant blood volume and often leave enough volume of residual blood to create secondary adverse effects, like hydrocephalus. IRRAflow was designed to increase drainage efficiency by means of gradual and continuous dilution of the pathological intracranial fluids through irrigating the catheter with physiological fluids as well as the continuous pressure fluctuations inside the pathological collection, which are created by the appropriate irrigation patterns. By design, the IRRAflow catheter probe is irrigated regularly in a way that maintains its patency. Catheter blockages are theoretically very unlikely since any material build-up at the catheter's tip is washed away during the next irrigation phase, which will occur in, at most, a couple of minutes. Additionally, the volume and flow rate of each irrigation is such that the length of the IRRAflow catheter probe's outer surface is washed by backflow, thus arguably reducing the chance for bacterial colonisation (Data on File at IRRAS). As for safety, IRRAflow automatically, reliably, and continuously monitors ICP and alerts hospital personnel with visual and sound alarms immediately when the patient's ICP is out of the pressure range set by the treating neurosurgeon, which eliminates any delay in detecting under or over drainage and any treatment's compromise. The clinical efficacy of the IRRAflow system is currently validated to a limited extent based on case series (Evidence grade 4) with a total number of patients around 200 distributed across multiple countries including in Greece, India, Sweden, Germany, UK, USA, and Finland. The system has been used to treat subarachnoid, intraventricular, intraparenchymal, and subdural hemorrhages. The system was CE Marked in 2014 and began limited market release in Germany in 2017. It received US FDA clearance in July of 2018 and began to be used commercially based on the conclusion that the device was safe. Case report data on the 200 initial patients has been collected by the company and maintained on file. The data has shown that zero IRRAflow catheter occlusions have been experienced when the irrigation setting has been activated (unpublished). Furthermore, treatment times were much shorter and posttreatment residual blood volumes were less than expected by the treating neurosurgeons (31), (Data on File at IRRAS). To date there have not been any documented blockages or probe associated infections detected in any IRRAflow treatment. At present time, there is no level 1 evidence for treatment efficacy. However, the treatment is new and intuitively rational, and it is applied for patients with intraventricular hemorrhage, which has an extremely high mortality and morbidity rate, for whom there are no other treatment options. In light of the above, the current clinical ACTIVE study is being initiated to evaluate the hypothesis that active irrigation by IRRAflow® will reduce the time needed for clearance of intraventricular blood from intraventricular space compared with passive drainage. Further, active controlled irrigation can improve catheter occlusion and infection rates compared with passive drainage. This is accomplished through IRRAflow's mechanism of action, Active Fluid Exchange (continuous, intelligent irrigation combined with continuous drainage and ICP monitoring). This active fluid exchange could enable an optimal washout of the ventricles thus leading to better outcomes than traditional treatment. Clinical evidence supporting this hypothesis has already been established by Zhang et al., 2007, and the aforementioned article. The investigators aim to provide that similar results can be obtain through less invasive methods. The investigators expect that the ACTIVE study will provide the first grade 1 evidence to date characterizing the IRRAflow IVH clearance performance, documenting device safety, and additionally provide preliminary indications of the potential correlated improvements in clinical outcome and cost-effectiveness of treatment as well as a potential reduction in post-surgical complications such as post-ictus hydrocephalus and central nervous system (CNS) infection. Endpoints and objectives are elaborated further below. If positive, the Study will provide a pivotal argument for the use of active fluid exchange in the treatment of hemorrhagic stroke with ventricular involvement, potentially changing standard practice for the better The proposed study is a multi center prospective, controlled, randomized trial to evaluate the efficacy and safety of evacuation of intraventricular hematoma by Active external ventricular drainage (INTERVENTION - IRRAflow) compared to passive external ventricular drainage (CONTROL - EVD). Randomization of the study will occur following enrollment upon the patient presentation to the emergency room. Upon initial diagnosis and enrollment, if it is determined that a CSF drainage is necessary, the patient will be randomized to either the IRRAflow with Active Fluid Exchange arm (intervention) or a standard practice EVD arm (control). The randomization will occur in a 1 to 1 fashion. This means, that 50% of cases will be randomized to the intervention and 50% to control. Drainage therapy with EVD or IRRAflow will commence for as long as it is deemed necessary by the treating physician. All patients enrolled in the trial will receive additional supportive and medical treatment by choice of the treating physician and in accordance with standard of care. Such treatment may include neurointensive care, neuromonitoring, and surgical or endovascular occlusion identified sources of intracranial hemorrhage, e.g. vascular anomalies, aneurisms, etc. Interventional treatment will be stopped in case of 1) patient exclusion from the trial, 2) ethical or medical safety contraindications for further interventional treatment determined by the Investigators. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05204849
Study type Interventional
Source University of Aarhus
Contact Mette Haldrup, MD
Phone 22715657
Email [email protected]
Status Recruiting
Phase N/A
Start date January 13, 2022
Completion date February 1, 2025

See also
  Status Clinical Trial Phase
Recruiting NCT04506619 - Safety and Efficacy Outcomes Following Previously Administered Short-Term Treatment With SHP607 in Extremely Premature Infants
Recruiting NCT04189471 - Recovery After Cerebral Hemorrhage
Terminated NCT04178746 - PRONTO: Artemis in the Removal of Intraventricular Hemorrhage in the Hyper-Acute Phase
Completed NCT02400697 - Placental Transfusion Project for Preterm Infants N/A
Recruiting NCT05113381 - The Purpose of This Study is to Determine Whether CerebroFlo™ EVD Catheter is Effective During the Treatment of IVH N/A
Recruiting NCT03754439 - Minimising the Adverse Physiological Effects of Transportation on the Premature Infant
Recruiting NCT05118997 - Active Removal of IntraCerebral Hematoma Via Active Irrigation N/A
Recruiting NCT01098890 - Intraventricular Tissue Plasminogen Activator (tPA) in the Management of Aneurysmal Subarachnoid Hemorrhage Phase 2
Recruiting NCT04538079 - Non-invasive Objective Assessment of Hemodynamics in Preterm Neonates
Completed NCT00809055 - MRI and Neurodevelopment in Preterm Infants Following Administration of High-Dose Caffeine Phase 4
Completed NCT00197392 - Comparative Infection Rates for the Codman BACTISEAL TM External Ventricular Drainage (EVD) System Phase 4
Completed NCT03110887 - Monitoring Outcome in Neonatal Thrombocytopenia N/A
Active, not recruiting NCT03253263 - A Clinical Efficacy and Safety Study of SHP607 in Preventing Chronic Lung Disease in Extremely Premature Infants Phase 2
Not yet recruiting NCT02394678 - Rheolytic Thrombectomy For Adult Intraventricular Haemorrhage N/A
Completed NCT00875758 - Optimizing Treatment of Post-hemorrhagic Ventricular Dilation in Preterm Infants N/A
Active, not recruiting NCT00515281 - Inhaled Nitric Oxide and Neuroprotection in Premature Infants Phase 2/Phase 3
Completed NCT03153150 - Start or STop Anticoagulants Randomised Trial (SoSTART) Phase 3
Terminated NCT02386228 - Micro Ribonucleic Acid (miRNA) Markers of Hydrocephalus in Intraventricular Hemorrhage (IVH) N/A
Active, not recruiting NCT04225286 - Intranasal Human Milk for Intraventricular Hemorrhage N/A
Completed NCT03230032 - Pacifier Activated Device and Mother's Voice in Infants at High-risk for Cerebral Palsy N/A