View clinical trials related to Intracranial Neoplasm.
Filter by:Technologies 3D are demonstrating enormous potential for innovation in the field of surgery,introducing the concept of "treatment customization" (from planning surgery to implant design and manufacturing) on the patient's anatomy, simply by taking advantage of the patient's own common diagnostic images and the flexibility of 3D printing. In fact, this new construction technology allows the construction of the complex anatomical geometries with economy, simplicity and on scales of production unattainable by other traditional technologies. This new construction technology allows, in fact, the construction of complex anatomical geometries with economy, simplicity and on scales of production unattainable by other traditional technologies.
This clinical trial evaluates the feasibility of performing oxygen-enhanced magnetic resonance imaging (MRI) to generate hypoxia maps in patients with intracranial tumors. Decreased levels of oxygen (hypoxia) is a hallmark of malignant brain tumors. Chronic hypoxia is a stimulator of blood vessel formation, which is required for tumor growth and spread. Hypoxia also limits the effectiveness of radiation and chemotherapy. MRI is an imaging technique that uses radiofrequency waves and a strong magnetic field rather than x-rays to provide detailed pictures of internal organs and tissues. The administration of inhaled oxygen allows for an increased MRI signal effect size. Oxygen-enhanced MRI may be a non-invasive method that can physiologically estimate tissue hypoxia. With a better understanding of the extent of tumor hypoxia, more effective and patient-specific therapies could be devised to halt malignant tumor growth.
This phase II trial studies how well hypofractionated proton or photon radiation therapy works in treating patients with brain tumors. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells. A shorter duration of radiation treatment may avoid some of the delayed side effects of radiation while providing a more convenient treatment and reducing costs.
The aim of this study was to investigate the effect of cerebral oxygenation on postoperative compilation in intracranial surgery.