Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT05442034
Other study ID # 2022-217-NSU
Secondary ID
Status Recruiting
Phase Phase 1/Phase 2
First received
Last updated
Start date January 1, 2023
Est. completion date June 30, 2025

Study information

Verified date July 2023
Source Nova Southeastern University
Contact Arsalan Danesh, D.D.S
Phone 5612126377
Email ad2900@mynsu.nova.edu
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Treatment of intra-bony defects is challenging and requires extensive knowledge of the etiology, anatomy, occlusion, and available biomaterials that can be used to treat this kind of defects. Patients who received scaling and root planing at the college of dental medicine due to periodontal disease, will be screened for inclusion. Only subjects who showed persistent deep probing depth associated with an intrabony defect will be included and will be randomly allocated to one of two treatment groups. One group will be treated using recombinant human platelet derived growth factor (GEM-21) (test) added to allogenic bone graft, second group will be treated using enamel matrix derivatives (EMD) (control) with allograft. Both groups will be treated using the same surgical protocol. Patients will be followed up for a period of 6 months, before getting re-evaluated for assessing the effectiveness of the applied therapies.


Description:

Alveolar bone crest is considered normal when it is found at a distance of 0.4- 1.97mm from the cementoenamel junction (CEJ) of the tooth. Chronic inflammation resulting from periodontal disease (PD) may lead to change in this architecture and formation of osseous defects. The variation in the form of these defects may be influenced by the occlusal stresses that the tooth is subjected to or the original form of the alveolar process in a localized area. While Glickman chose to classify the osseous defects into "Osseous craters, intra-bony defects, bulbous osseous contours, hemi-septa, inconsistent margins and ledges"; Pritchard classified them as "interproximal craters, inconsistent margins, hemi-septa, furca invasions, intra-bony defects and a combination of these defects". Identifying the type of defect is of utmost importance. Intra-bony defects found in the interproximal areas can be one-wall, two-walls, or three-walls defects, depending on how many walls are remaining. On the other hand, when the inter-radicular bone is lost, its commonly classified as grade I, grade II, or grade III furcation. Successful regeneration of the intra-bony defects will be accompanied by clinical attachment gain, decreased pocket depth, radiographic bone height gain, and improved periodontal health, to reach this goal, several types of bone grafts, membranes, biologics and/or combinations, have been investigated for potential application and, they proved success over short- and long-term. Flemming et al. 1998, tested the bone gain following open flap debridement (OFD) versus allogeneic bone graft. The group that received allogenic bone graft had higher bone gain compared to the OFD group at 6 months (2.2mm vs 1.2mm) and 3 years (2.3mm vs 1.1mm) (P <0.05). Comparable results were found when A. Sculean et al 2004, tested CAL gain when enamel matrix proteins (EMD) was used versus OFD; having 1.3mm of CAL gain at 5 years when the latter was used versus 2.9mm when the former was used (p<0.001). Eickholz et al. 2004, tested the use of bioabsorbable membrane for the treatment of intra-bony defects with guided tissue regeneration. Attachment height gain was stable at 12- and 60-months follow up (3.5mm and 2.2mm). In a case series, Kim et al. compared the clinical attachment gain in 12 pairs of intra-bony defects in 12 subjects. One side was randomly assigned to receive GTR with a bioabsorbable membrane (Polyglactin) (control), while the contralateral received non-resorbable membrane (e-PTFE) (test). Both groups yielded significant clinical attachment gain at 6 (C6 and T6) and 60 months (C60 and T60), (C6: 2.6 ± 1.4 mm; C60: 1.6 ± 1.5 mm; T6: 3.0 ± 1.7 mm; T60: 3.0 ± 0.7 mm). Emdogain is a biologic material that consists of hydrophobic enamel matrix proteins extracted from developing embryogenic enamel of porcine origin. It was first tested on monkeys for ability to regenerate buccal dehiscence defects and resulted in complete regeneration of the defect. It was later used in conjunction with Modified Widman Flap (MWF) and compared to MWF with placebo, for the regeneration of intra-bony defects in human subjects. At 36 months, the EMD group yielded significantly higher bone gain (2.2 mm vs 1.7 mm), respectively. Platelet derived growth factors (PDGF) is a human serum polypeptide growth factor, it is a potent mitogen for cells of mesenchymal origin (e.g., fibroblasts), it stimulates collagen synthesis, chemotaxis of fibroblasts and production of insulin-like growth factors (IGF). It has been tested both in vitro and in vivo, it has proved potential for promoting soft tissue wound repair, and when used in periodontal defects, it stimulated healing with new bone and cementum formation, and a deposition of a continuous layer of osteoblasts was noticed lining the newly formed bone. Based on the above evidence, it is now clear that different techniques and biomaterials can be used for periodontal regeneration. It is the purpose of the current study, to investigate the effect of rh-PDGF (test) in its commercial form (GEM21) and enamel matrix derivatives in its commercial form (EMD) (control) in combination with allografts for the treatment of periodontal defects in one-wall and two-walls intra-bony defects in human subjects.


Recruitment information / eligibility

Status Recruiting
Enrollment 36
Est. completion date June 30, 2025
Est. primary completion date June 30, 2025
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Age is 18 years old and older - Absence of relevant medical conditions - Availability for 6-month follow-up - Subjects who recently have received scaling and root planing due to periodontal disease - Single-rooted and multi-rooted teeth in either the maxilla or the mandible. - Presence of interdental periodontal pocket with PD = 6 mm associated to an intra-bony component ranged from 3 to 6 mm. - Non-contained intra-bony defects (1-wall, 2-wall intra-bony defects) - Full-mouth plaque score (FMPS) and full-mouth bleeding score (FMBS) <20% at surgery Exclusion Criteria: - Female patients who are pregnant or planning to be pregnant during the period of the study - Heavy smokers (>10 cigarettes a day) - Subjects not willing to comply to the study protocol - Patients with uncontrolled diabetes (HbA1c >7.5) - Patients receiving medications that may affect periodontal status in the previous 6 months (e.g., Phenytoin, Alendronate) - Periapical lesion in the tested sites

Study Design


Related Conditions & MeSH terms


Intervention

Biological:
growth factors to help in regeneration
regenerative therapy

Locations

Country Name City State
United States Nova Southeastern University Davie Florida

Sponsors (1)

Lead Sponsor Collaborator
Nova Southeastern University

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Clinical Attachment Changes Change in gingival recession and pocket probing depth 6 months
See also
  Status Clinical Trial Phase
Completed NCT04319770 - Effectiveness of Hyaluronic Acid in the Regeneration of Infrabony Defects N/A
Completed NCT03651908 - Comparison Between Bioactive Silica Graft Plus Platelet Rich Fibrin and Only Platelet Rich Fibrin Graft in Intrabony Defects With Diabetes N/A
Enrolling by invitation NCT04971174 - Outcomes of Periodontal Regenerative Treatment
Active, not recruiting NCT03922503 - Clinical Effect of APRF With DFDBA Compare to Collagen Membrane With DFDBA in Intraosseous Defect N/A
Completed NCT03924336 - The Effect of A-PRF+ Versus Open Flap Debridement in the Treatment of Patients With Stage III Periodontitis N/A
Not yet recruiting NCT05499598 - Evaluation of Modified Minimally Invasive Surgical Technique and Platelet Rich Fibrin With or Without Vitamin Pool A and C for Management of Periodontal Intrabony Defects N/A
Not yet recruiting NCT04444063 - Clinical and Radiograhic Evaluation of NIPSA With and Without Allograft Plus Platelet Rich Fibrin in the Treatment of Intraosseous Defects in Stage III Periodontitis Patients N/A
Completed NCT04896450 - Comparison of the GTR Procedure Alone and in Combination With Immediate OTM N/A
Completed NCT02828423 - Regenerative Combined Therapy With Enamel Matrix Derivative and Biphasic Calcium Phosphate Graft Phase 4
Active, not recruiting NCT03900013 - Injectable Platelet Rich Fibrin With Demineralized Freeze-dried Bone Allograft in Treatment of Intraosseous Defects N/A
Completed NCT05456555 - The Flapless Approach in Periodontal Regeneration N/A
Not yet recruiting NCT03588507 - Clinical and Radiographic Evaluation of PPF With or Without NCHA Bone in Treatment of Intrabony Defects N/A
Completed NCT02761668 - Timing of Orthodontic Therapy and Regenerative Periodontal Surgery in Advanced Periodontitis Patients With Pathologic Tooth Migration N/A
Not yet recruiting NCT05569473 - Evaluation of Volume Stable Collagen Matrix in the Regenerative Outcome of Periodontal Intrabony Defects N/A
Completed NCT06041854 - Allograft With Enamel Matrix Derivative Versus Allograft Alone in the Treatment of Intrabony Defects . N/A
Completed NCT06371027 - Novel Silk Fibroin Nanofiber Membrane Using Minimally Invasive Surgery in Treatment of Periodontal Intrabony Defects: A Randomized Clinical Trial N/A
Not yet recruiting NCT05858411 - Efficacy of rhPDGF as an Adjunct to Non-surgical Periodontal Therapy of Intrabony Defects N/A
Recruiting NCT06426524 - Efficacy of Insulin Like Growth Factor-1(IGF-1) on Bone Regeneration in Intrabony Defects : A Clinico-radiograph Study N/A
Recruiting NCT05354037 - Flapless Approach for the Treatment of Intrabony Defects N/A
Recruiting NCT06048042 - Evaluation of Autogenous Demineralized Dentin Graft Vs Autogenous Bone Graft in Management of Intrabony Defects Phase 4