Interstitial Lung Disease Clinical Trial
Official title:
Interstitial Lung Abnormalities--Qualitative Imaging Cohort Study in CT Lung Cancer Screening Population
NCT number | NCT04503044 |
Other study ID # | 1628689 |
Secondary ID | |
Status | Completed |
Phase | |
First received | |
Last updated | |
Start date | January 30, 2021 |
Est. completion date | June 30, 2021 |
Verified date | August 2021 |
Source | Lahey Clinic |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Observational |
Interstitial Lung Abnormalities (ILA) have been previously defined as nondependent changes affecting more than 5% of any lung zone on computed tomography (CT) scans of the lung. Several studies suggest that the prevalence of ILA in participants in non-pulmonary research studies ranges anywhere from 7-9%. Work over the last decade has shown that, despite previous characterization as an asymptomatic research finding, ILA has significant clinical and biological consequences. These include reduced exercise capacity, functional limitations, decreased lung volumes, increased mortality, and in some cases histopathology similar to Idiopathic Pulmonary Fibrosis (IPF). ILA have been detected in lung cancer screening cohorts, where the prevalence of ILA is estimated to be between (10%-20%) to those noted in other research cohorts. Given that a significant proportion of those will have progression, CT lung cancer screening (CTLS) cohorts represent an ideal catchment population for future research and clinical trials. Lahey Hospital and Medical Center was one of the earliest clinical centers to develop a CTLS program in the country. Investigators propose to qualitatively characterize ILA in a large clinical CTLS population.
Status | Completed |
Enrollment | 1703 |
Est. completion date | June 30, 2021 |
Est. primary completion date | June 30, 2021 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 80 Years |
Eligibility | Inclusion Criteria: Patient who have undergone low-dose screening CT scan for lung cancer as part of the LHMC CTLS program from January 1, 2012 through September 30, 2014, with an in-network PCP. Exclusion Criteria: Any patient that does not meet inclusion criteria. |
Country | Name | City | State |
---|---|---|---|
United States | Lahey Hospital and Medical Center | Burlington | Massachusetts |
Lead Sponsor | Collaborator |
---|---|
Lahey Clinic | Genentech, Inc. |
United States,
Araki T, Putman RK, Hatabu H, Gao W, Dupuis J, Latourelle JC, Nishino M, Zazueta OE, Kurugol S, Ross JC, San José Estépar R, Schwartz DA, Rosas IO, Washko GR, O'Connor GT, Hunninghake GM. Development and Progression of Interstitial Lung Abnormalities in the Framingham Heart Study. Am J Respir Crit Care Med. 2016 Dec 15;194(12):1514-1522. — View Citation
Ash SY, Harmouche R, Putman RK, Ross JC, Diaz AA, Hunninghake GM, Onieva Onieva J, Martinez FJ, Choi AM, Lynch DA, Hatabu H, Rosas IO, San Jose Estepar R, Washko GR; COPDGene Investigators. Clinical and Genetic Associations of Objectively Identified Interstitial Changes in Smokers. Chest. 2017 Oct;152(4):780-791. doi: 10.1016/j.chest.2017.04.185. Epub 2017 May 12. — View Citation
Ash SY, Harmouche R, Ross JC, Diaz AA, Hunninghake GM, Putman RK, Onieva J, Martinez FJ, Choi AM, Lynch DA, Hatabu H, Rosas IO, Estepar RSJ, Washko GR. The Objective Identification and Quantification of Interstitial Lung Abnormalities in Smokers. Acad Radiol. 2017 Aug;24(8):941-946. doi: 10.1016/j.acra.2016.08.023. Epub 2016 Dec 15. — View Citation
Doyle TJ, Hunninghake GM, Rosas IO. Subclinical interstitial lung disease: why you should care. Am J Respir Crit Care Med. 2012 Jun 1;185(11):1147-53. doi: 10.1164/rccm.201108-1420PP. Epub 2012 Feb 23. Review. — View Citation
Doyle TJ, Washko GR, Fernandez IE, Nishino M, Okajima Y, Yamashiro T, Divo MJ, Celli BR, Sciurba FC, Silverman EK, Hatabu H, Rosas IO, Hunninghake GM; COPDGene Investigators. Interstitial lung abnormalities and reduced exercise capacity. Am J Respir Crit Care Med. 2012 Apr 1;185(7):756-62. doi: 10.1164/rccm.201109-1618OC. Epub 2012 Jan 20. — View Citation
Flaherty KR, Wells AU, Cottin V, Devaraj A, Walsh SLF, Inoue Y, Richeldi L, Kolb M, Tetzlaff K, Stowasser S, Coeck C, Clerisme-Beaty E, Rosenstock B, Quaresma M, Haeufel T, Goeldner RG, Schlenker-Herceg R, Brown KK; INBUILD Trial Investigators. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. N Engl J Med. 2019 Oct 31;381(18):1718-1727. doi: 10.1056/NEJMoa1908681. Epub 2019 Sep 29. — View Citation
Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008 Mar;246(3):697-722. doi: 10.1148/radiol.2462070712. Epub 2008 Jan 14. — View Citation
Horeweg N, van der Aalst CM, Thunnissen E, Nackaerts K, Weenink C, Groen HJ, Lammers JW, Aerts JG, Scholten ET, van Rosmalen J, Mali W, Oudkerk M, de Koning HJ. Characteristics of lung cancers detected by computer tomography screening in the randomized NELSON trial. Am J Respir Crit Care Med. 2013 Apr 15;187(8):848-54. doi: 10.1164/rccm.201209-1651OC. — View Citation
Horeweg N, van Rosmalen J, Heuvelmans MA, van der Aalst CM, Vliegenthart R, Scholten ET, ten Haaf K, Nackaerts K, Lammers JW, Weenink C, Groen HJ, van Ooijen P, de Jong PA, de Bock GH, Mali W, de Koning HJ, Oudkerk M. Lung cancer probability in patients with CT-detected pulmonary nodules: a prespecified analysis of data from the NELSON trial of low-dose CT screening. Lancet Oncol. 2014 Nov;15(12):1332-41. doi: 10.1016/S1470-2045(14)70389-4. Epub 2014 Oct 1. — View Citation
Hunninghake GM, Hatabu H, Okajima Y, Gao W, Dupuis J, Latourelle JC, Nishino M, Araki T, Zazueta OE, Kurugol S, Ross JC, San José Estépar R, Murphy E, Steele MP, Loyd JE, Schwarz MI, Fingerlin TE, Rosas IO, Washko GR, O'Connor GT, Schwartz DA. MUC5B promoter polymorphism and interstitial lung abnormalities. N Engl J Med. 2013 Jun 6;368(23):2192-200. doi: 10.1056/NEJMoa1216076. Epub 2013 May 21. — View Citation
Jin GY, Lynch D, Chawla A, Garg K, Tammemagi MC, Sahin H, Misumi S, Kwon KS. Interstitial lung abnormalities in a CT lung cancer screening population: prevalence and progression rate. Radiology. 2013 Aug;268(2):563-71. doi: 10.1148/radiol.13120816. Epub 2013 Mar 19. — View Citation
Lynch DA, Sverzellati N, Travis WD, Brown KK, Colby TV, Galvin JR, Goldin JG, Hansell DM, Inoue Y, Johkoh T, Nicholson AG, Knight SL, Raoof S, Richeldi L, Ryerson CJ, Ryu JH, Wells AU. Diagnostic criteria for idiopathic pulmonary fibrosis: a Fleischner Society White Paper. Lancet Respir Med. 2018 Feb;6(2):138-153. doi: 10.1016/S2213-2600(17)30433-2. Epub 2017 Nov 15. Review. — View Citation
Miller ER, Putman RK, Vivero M, Hung Y, Araki T, Nishino M, Washko GR, Rosas IO, Hatabu H, Sholl LM, Hunninghake GM. Histopathology of Interstitial Lung Abnormalities in the Context of Lung Nodule Resections. Am J Respir Crit Care Med. 2018 Apr 1;197(7):955-958. doi: 10.1164/rccm.201708-1679LE. — View Citation
Moyer VA; U.S. Preventive Services Task Force. Screening for lung cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014 Mar 4;160(5):330-8. doi: 10.7326/M13-2771. — View Citation
National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011 Aug 4;365(5):395-409. doi: 10.1056/NEJMoa1102873. Epub 2011 Jun 29. — View Citation
Pastorino U, Silva M, Sestini S, Sabia F, Boeri M, Cantarutti A, Sverzellati N, Sozzi G, Corrao G, Marchianò A. Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: new confirmation of lung cancer screening efficacy. Ann Oncol. 2019 Jul 1;30(7):1162-1169. doi: 10.1093/annonc/mdz117. Erratum in: Ann Oncol. 2019 Oct 1;30(10):1672. — View Citation
Putman RK, Gudmundsson G, Axelsson GT, Hida T, Honda O, Araki T, Yanagawa M, Nishino M, Miller ER, Eiriksdottir G, Gudmundsson EF, Tomiyama N, Honda H, Rosas IO, Washko GR, Cho MH, Schwartz DA, Gudnason V, Hatabu H, Hunninghake GM. Imaging Patterns Are Associated with Interstitial Lung Abnormality Progression and Mortality. Am J Respir Crit Care Med. 2019 Jul 15;200(2):175-183. doi: 10.1164/rccm.201809-1652OC. — View Citation
Putman RK, Hatabu H, Araki T, Gudmundsson G, Gao W, Nishino M, Okajima Y, Dupuis J, Latourelle JC, Cho MH, El-Chemaly S, Coxson HO, Celli BR, Fernandez IE, Zazueta OE, Ross JC, Harmouche R, Estépar RS, Diaz AA, Sigurdsson S, Gudmundsson EF, Eiríksdottír G, Aspelund T, Budoff MJ, Kinney GL, Hokanson JE, Williams MC, Murchison JT, MacNee W, Hoffmann U, O'Donnell CJ, Launer LJ, Harrris TB, Gudnason V, Silverman EK, O'Connor GT, Washko GR, Rosas IO, Hunninghake GM; Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Investigators; COPDGene Investigators. Association Between Interstitial Lung Abnormalities and All-Cause Mortality. JAMA. 2016 Feb 16;315(7):672-81. doi: 10.1001/jama.2016.0518. — View Citation
Washko GR, Hunninghake GM, Fernandez IE, Nishino M, Okajima Y, Yamashiro T, Ross JC, Estépar RS, Lynch DA, Brehm JM, Andriole KP, Diaz AA, Khorasani R, D'Aco K, Sciurba FC, Silverman EK, Hatabu H, Rosas IO; COPDGene Investigators. Lung volumes and emphysema in smokers with interstitial lung abnormalities. N Engl J Med. 2011 Mar 10;364(10):897-906. doi: 10.1056/NEJMoa1007285. — View Citation
Whittaker Brown SA, Padilla M, Mhango G, Powell C, Salvatore M, Henschke C, Yankelevitz D, Sigel K, de-Torres JP, Wisnivesky J. Interstitial Lung Abnormalities and Lung Cancer Risk in the National Lung Screening Trial. Chest. 2019 Dec;156(6):1195-1203. doi: 10.1016/j.chest.2019.06.041. Epub 2019 Aug 9. — View Citation
* Note: There are 20 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Prevalence of ILA at baseline | Both presence and absence of ILA, as well as phenotypes, will be described for the entire cohort. | 6 months | |
Primary | Association between baseline ILA (presence/absence) and time to mortality, time to first hospitalization, and time to development of cancer in the full cohort | Kaplan-Meier plots will be generated to visualize the associations between ILA variables and cancer, hospital admission and mortality. The log-rank test will be used to evaluate for a significant association. Cox regression proportional hazards models will be used to test for this association in both univariate and multivariable models. The multivariable model will be adjusted for age, sex, smoking status and pack years exposure. | 6 months | |
Primary | Progression of ILA | Progression of ILA, defined as worsening of existing ILA or incidence of ILA over 5 years, will be described for the subset of patients with T4 imaging at 5 years. Univariate and multivariable analyses using logistic regression will be performed to test for associations between qualitative ILA characteristics (presence and absence, as well as individual phenotypes in separate models) and progression (yes/no). Stable and improved will be considered no progression, while incident ILA and worsening of existing ILA will be considered progression. Models will be checked for influential points. Multivariable models will be adjusted for sex, age, currently smoking, and pack years exposure. | 6 months | |
Secondary | Association between phenotypes of ILA and outcomes | Using Kaplan-Meier plots and Cox regression analysis to examine association between phenotypes of ILA with time to first hospitalization, cancer, and mortality. The proportional hazards assumption will be checked for all Cox regression models. | 6 months | |
Secondary | Association between ILA and time to cause-specific mortality, hospitalization. | Investigators will investigate the association between ILA (presence/absence) and time to cause-specific mortality (pulmonary, cardiac, cancer, other), as well as cause-specific hospitalization based on primary diagnosis (COPD, PNA, and CHF). The proportional hazards assumption will be checked for all Cox regression models. | 6 months |
Status | Clinical Trial | Phase | |
---|---|---|---|
Enrolling by invitation |
NCT04905693 -
Extension Study of Inhaled Treprostinil in Subjects With Idiopathic Pulmonary Fibrosis
|
Phase 3 | |
Recruiting |
NCT05631132 -
May Noninvasive Mechanical Ventilation (NIV) and/or Continuous Positive Airway Pressure (CPAP) Increase the Bronchoalveolar Lavage (BAL) Salvage in Patients With Pulmonary Diseases?
|
N/A | |
Recruiting |
NCT05417776 -
Collagen-targeted PET Imaging for Early Interstitial Lung Disease
|
Phase 2 | |
Not yet recruiting |
NCT04089826 -
Long Term Oxygen Therapy in Patients With Interstitial Lung Disease
|
||
Recruiting |
NCT03467880 -
Multicenter Study of Impulse Oscillometry in Chinese
|
N/A | |
Completed |
NCT00883129 -
Comparison of Therapeutic Regimens for Scleroderma Interstitial Lung Disease (The Scleroderma Lung Study II)
|
Phase 2 | |
Completed |
NCT00362739 -
Blood Collection From Individuals With Lung Disease for Genetic Studies
|
N/A | |
Recruiting |
NCT06133998 -
Effects of Incentive Spirometry With and Without Aerobic Exercises in Interstitial Lung Disease
|
N/A | |
Active, not recruiting |
NCT03485378 -
Assessment of Precision Irradiation in Early NSCLC and Interstitial Lung Disease
|
N/A | |
Recruiting |
NCT04098094 -
Outcomes of RV Dysfunction in Acute Exacerbation of Chronic Respiratory Diseases
|
||
Recruiting |
NCT03400839 -
Best Clinical Endpoints That Likely Induce Worse Prognosis in Interstitial Lung Diseases
|
||
Terminated |
NCT02633293 -
An Open Label Extension Study to Evaluate Inhaled Treprostinil in Adult PH With ILD Including CPFE
|
Phase 2/Phase 3 | |
Enrolling by invitation |
NCT05001009 -
Goals of Care Conversations Study
|
N/A | |
Active, not recruiting |
NCT05068869 -
Digital Outpatient Services
|
N/A | |
Active, not recruiting |
NCT03727568 -
Study Comparing Two Different Methods of Cryobiopsy in the Interstitial Lung Diseases
|
N/A | |
Recruiting |
NCT06046547 -
Integrating Palliative Care Education in Pulmonary Rehabilitation
|
N/A | |
Completed |
NCT04946708 -
Virtual Exercise Program in Interstitial Lung Disease (ILD) Patients
|
N/A | |
Recruiting |
NCT04139356 -
The Effect of Spontaneous Respiration on Pulse-oximetry Measurements
|
N/A | |
Recruiting |
NCT03726398 -
CompRehensive Phenotypic Characterization of Patients With Scleroderma-Associated ILD and PH
|
Phase 2/Phase 3 | |
Active, not recruiting |
NCT03295279 -
WTC Chest CT Imaging Archive
|