View clinical trials related to Infection, Mixed.
Filter by:This study is a large multi-centre collaboration between a busy regional paediatric intensive care transport service (Children's Acute Transport Service, CATS), four large paediatric intensive care units (PICUs at Great Ormond Street Hospital, St Mary's Hospital and Royal London Hospital in London, and Addenbrookes Hospital in Cambridge) and the Department of Paediatrics at Imperial College, London. CATS transports over 800 sick children on life support to the three PICUs each year. We aim to improve our understanding of the genetic basis and biological pathways by which children with acute infection or injury become critically ill and develop failure of vital organs, and how these factors influence outcome. We will establish well-characterised cohorts of sick children with diverse pathologies, in whom blood, urine and other samples will be collected at an early stage of critical illness. Samples will be analysed using genomic, transcriptomic, proteomic and metabolomic approaches. Advanced bioinformatics techniques will be used to identify biomarkers for early diagnosis and robust risk stratification. We will focus on biomarkers to help distinguish between serious bacterial infections, viral infections and other causes of critical illness; diagnose incipient organ failure; and accurately identify, early on, children at high risk of developing a poor outcome. We will recruit critically ill children at first contact with the CATS team, during emergency transport to PICU. Due to the emergency nature of the research, and minimal risk associated with the study procedure, we will seek deferred, written informed consent from parents/guardians once their child has been stabilised, within 24-48 hours following PICU admission. By studying these important questions, we aim to better understand how we can diagnose and provide early life-saving treatments to critically ill children. The research team have an established track record of successful completion of several large clinical studies in critical care as well as validation of biomarkers in other diseases.
The aim of this project is to test the utility of The Gene Z device (as of 2018 Gene Z no longer being used) and other rapid identification techniques that the investigators have developed in the lab on clinically obtained bodily fluid samples taken from patients with suspected infection or sepsis based on having three of four positive Systemic Inflammatory Response Syndrome markers, or having a known infection for which a specimen is being collected. Specimens will be collected by Sparrow Laboratories and McLaren Greater Lansing laboratories, processed and stored for analysis at a later date to determine if the microbial pathogens identified by current methods of culture, as well as pathogen susceptibility to antibiotics by culture results, can be identified by the GeneZ technology or other developed technology accurately, and more timely. It will not affect current patient care nor impact patient care, which will continue in the standard fashion today for sepsis. Results will be compared to standard culture results and antibiotic sensitivities.