View clinical trials related to IDH1 Gene Mutation.
Filter by:Among the most notable cancer genome-wide sequencing discoveries in recent years was the finding of mutation hot-spots in the isocitrate dehydrogenase (IDH) genes in grade II/III astrocytomas and oligodendrogliomas and in secondary glioblastomas. This was rapidly followed by identification of recurrent IDH1/2 mutations in myeloid neoplasms (MN), including acute myeloid leukemia (AML). Mutant IDH is now a therapeutic target of great interest in cancer research, especially in AML, given the limitations of current approved therapies and the encouraging early clinical data demonstrating proof of concept for investigational mutant IDH1/2 inhibitors. The origin of mutations in AML was explored by investigating the clonal evolution of genomes sequenced from patients with M1- or M3-AML and comparing them with hematopoietic stem/progenitor cells (HSPCs) from healthy volunteers. Six genes were found to have statistically higher mutation frequencies in M1 versus M3 genomes (NPM1, DNMT3A, IDH1, IDH2, TET2 and ASXL1), suggesting they are initiating rather than cooperating events. Prospective evaluation of serial 2- HG levels during treatment of newly diagnosed AML treated with standard chemotherapy revealed that both 2-HG level and mutated IDH allele burden decreased with response to treatment but began to rise again as therapy failed. The prognostic impact of IDH mutations in AML is under continued investigation and varies across studies. In this research project authors aim a) to define the prevalence and type of IDH1/2 mutations in AML patients; b) to define relationships between IDH1/2 mutations and other oncogenic mutations in AML, as well as to describe clonal evolution of the disease and c) to describe the clinical outcome of IDH1/2 mutated patients with AML treated with currently available treatments.
This study is being done to see whether AG-120 is an effective and safe treatment for people with advanced/metastatic or recurrent chondrosarcoma that has IDH1 mutation.
This phase I trial studies the side effects and best dose of BGB-290 and temozolomide in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma that is newly diagnosed or has come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma.