View clinical trials related to IDH Mutation.
Filter by:This is a Phase II study of the combination of All-Trans Retinonic Acid (ATRA) and PD-1 inhibition (Retifanlimab) in patient with recurrent IDH-mutant glioma. The Sponsor-Investigator hypothesizes that the proposed regimen will be safe and stimulate a robust anti-tumor immune response.
This study aims to look at how BAY 2402234 responds in body in patients with recurrent glioma.
The purpose of this research is to gather information on the safety and effectiveness of fedratinib (a drug called a "jak inhibitor" ) in combination with ivosidenib or enasidenib (two anti-cancer drugs). While all three drugs are FDA-approved for various conditions, the US Food and Drug Administration (FDA) has not approved the combination of these drugs for the treatment of rare blood cancers that present Isocitrate dehydrogenase (IDH) mutations, and therefore these drugs can only be given in a research study.
In view of the strong biological rationale of employing PARP inhibition in high grade glioma, the current study purposes testing of talazoparib in a biomarker-enriched group of glioma. Carboplatin will be added to sensitize the tumor to PARP inhibition, and low dose radiation therapy will be applied to increase talazoparib drug penetration through blood-brain barrier. The goal is to estimate the effect size of such combinational treatment approach in recurrent high-grade glioma with DNA damage repair deficiency (dDDR)
High field MR-technologies are expected to boost metabolic spectroscopic imaging (MRSI), but also CEST-MRI. This is due to the fact that increased SNR is available which can be used to increase the spatial resolution of all sequences, or reduction of measurement times. Recent findings has shown that MRSI can be used to evaluate the isocitrate dehydrogenase (IDH) status of gliomas, a brain tumor type which is most often diagnosed in humans. Patients with IDH-mutated gliomas have a much longer survival time that IDH-wildtype. In IDH-mutated gliomas the substance 2-hydroxy-glutarate (2HG) is found, whereas in IDH-wildtype gliomas it is not. The underlying trial aims to measure 2HG directly with different MRSI sequences at 3 Tesla (3T) and 7 Tesla (7T) magnetic field strength. Apart from MRSI-techniques for IDH-typing it has been shown that CEST-imaging can also be performed to determine the IDH-status of gliomas. A total of 75 patients and 50 healthy controls will be examined in this study to evaluate the most accurate method for pre-operative IDH-status determination.
This is a phase 2 study of the combination of drugs olaparib and durvalumab for the treatment of isocitrate dehydrogenase or (IDH) mutated solid tumors. The purpose of this study is to assess the efficacy of the drug combination via overall response rate and overall disease control rate. It is believed that giving olaparib and durvalumab together would be more useful when given to patients with IDH-mutated solid tumors than giving each drug alone.