Hypoxic-Ischemic Encephalopathy Clinical Trial
Official title:
Systemic Biomarkers of Brain Injury From Hyperammonemia
Ammonia is a waste product of protein and amino acid catabolism and is also a potent neurotoxin. High blood ammonia levels on the brain can manifest as cytotoxic brain edema and vascular compromise leading to intellectual and developmental disabilities. The following aims are proposed: Aim 1 of this study will be to determine the chronology of biomarkers of brain injury in response to a hyperammonemic (HA) brain insult in patients with an inherited hyperammonemic disorder. Aim 2 will be to determine if S100B, NSE, and UCHL1 are altered in patients with two other inborn errors of metabolism, Maple Syrup Urine Disease (MSUD) and Glutaric Acidemia (GA1).
Ammonia is a waste product of protein and amino acid catabolism and is also a potent neurotoxin. The onslaught of high blood ammonia levels on the brain can manifest as cytotoxic brain edema and vascular compromise leading to intellectual and developmental disabilities. In addition, clinical hyperammonemia recurs at varying intervals, which can increase the cumulative damage to the brain and the chance of irreversible coma and death during a hyperammonemia episode due to vascular compromise or brain herniation. The threshold of tolerance for elevated blood ammonia is very low and concentrations above 100 µM can cause brain dysfunction manifested as nausea, vomiting, lethargy, and abnormal behavior; higher concentrations can cause coma and even death. Failure to remove ammonia can be due to inherited defects of the urea cycle, some defects in amino acid catabolism, and degradation of fatty acids. Aim 1 - To determine the chronology of biomarkers of brain injury - S100B, NSE, and UCHL1 - in response to a hyperammonemic (HA) brain insult in patients with an inherited hyperammonemic disorder. We hypothesized that elevations of S100B, NSE, and UCHL1 will parallel the rise in blood ammonia. These biomarkers will be measured concurrently to ammonia levels throughout hospitalizations for HA until normalization of patient's blood ammonia and mental status. Aim 2 - To determine if S100B, NSE, and UCHL1 are altered in patients with two other inborn errors of metabolism in which the primary pathology is neurological injury, Maple Syrup Urine Disease (MSUD) and Glutaric Acidemia (GA1). We hypothesize that neuronal and astroglial injury in these disorders may also result in increased levels of S100B, NSE, and UCHL1. Metabolic patients will be enrolled either during a hospitalization or in outpatient clinic, but outpatient enrollment is preferred. Metabolic patients typically have multiple laboratory tests performed at their outpatient visits. We will obtain the discarded blood samples from such laboratory tests in order to measure S100B, NSE, and UCHL1 levels at baseline (normal blood ammonia), which will provide data on biomarker levels following recovery from a hyperammonemic episode. During hospitalization for metabolic decompensation or for hypoxic-ischemic encephalopathy, sequential measurements of S100B, NSE and UCHL1 levels will be obtained from discarded blood samples. We will obtain S100B, NSE, and UCHL1 levels from collected discarded blood samples at all subjects' next outpatient visit following their hospitalization, to determine if levels return to baseline. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT05048550 -
Babies in Glasses; a Feasibility Study.
|
N/A | |
Recruiting |
NCT05514340 -
Assess Safety and Efficacy of Sovateltide in Hypoxic-ischemic Encephalopathy
|
Phase 2 | |
Recruiting |
NCT05836610 -
Hydrocortisone Therapy Optimization During Hypothermia Treatment in Asphyxiated Neonates
|
Phase 4 | |
Completed |
NCT03024021 -
Cerebral Oxymetry and Neurological Outcome in Therapeutic Hypothermia
|
||
Completed |
NCT01913340 -
Neonatal Erythropoietin And Therapeutic Hypothermia Outcomes in Newborn Brain Injury (NEATO)
|
Phase 1/Phase 2 | |
Enrolling by invitation |
NCT02260271 -
Florida Neonatal Neurologic Network
|
||
Terminated |
NCT01192776 -
Optimizing (Longer, Deeper) Cooling for Neonatal Hypoxic-Ischemic Encephalopathy(HIE)
|
N/A | |
Completed |
NCT06344286 -
The Effects of Minimal Enteral Nutrition on Mesenteric Blood Flow and Oxygenation in Neonates With HIE
|
N/A | |
Recruiting |
NCT05901688 -
Umbilical Cord Abnormalities in the Prediction of Adverse Pregnancy Outcomes
|
||
Recruiting |
NCT02894866 -
Hyperbaric Oxygen Therapy Improves Outcome of Hypoxic-Ischemic Encephalopathy
|
N/A | |
Recruiting |
NCT03657394 -
Comparative Outcomes Related to Delivery-room Cord Milking In Low-resourced Kountries
|
N/A | |
Recruiting |
NCT03682042 -
Comparative Outcomes Related to Delivery-room Cord Milking In Low-resourced Kountries Developmental Follow Up
|
N/A | |
Withdrawn |
NCT03681314 -
Umbilical Cord Milking in Neonates Who Are Depressed at Birth-Developmental Follow Up (MIDAB-FU)
|
N/A | |
Completed |
NCT03485781 -
Propofol-induced EEG Changes in Hypoxic Brain Injury
|
||
Not yet recruiting |
NCT06429007 -
A Safety and Feasibility Trial Protocol of Metformin in Infants After Perinatal Brain Injury
|
Phase 2 | |
Recruiting |
NCT05568264 -
Effects of a Physical Therapy Intervention on Motor Delay in Infants Admitted to a Neonatal Intensive Care Unit
|
N/A | |
Not yet recruiting |
NCT06448780 -
Dose Optimization of Caffeine for HIE
|
Phase 1 | |
Completed |
NCT02264808 -
Developmental Outcomes
|
||
Completed |
NCT05687708 -
Effect of Non-nutritive Sucking on Transition to Oral Feeding in Infants With Asphyxia
|
N/A | |
Recruiting |
NCT06195345 -
Individual Cerebral Hemodynamic Oxygenation Relationships (ICHOR 1)
|