Clinical Trials Logo

Clinical Trial Summary

Hemodialysis (HD) is widely used treatment for end stage renal diseases (ESRD) patients. The chief aims of HD are solute and fluid removal. Decades of practice have improved HD care, but more can be done to improve morbidity and mortality. Enhancing toxin removal is an important consideration for improved patient outcomes. Also, decreasing the incidence of intra-dialytic hypotensive (IDH) episodes (dominant in Singapore patient cohort) can significantly reduce associated morbidities and mortality. A simple maneuver for clinicians is the dialysate temperature. Literature suggests that a lower dialysate temperature (35ºC) results in reduced hypotensive episodes by vasoconstriction. Conversely, higher dialysate temperature resulting in higher blood temperature decreases the peripheral resistance, leading to increased toxin removal, but may cause IDH episodes partly due to vasodilation. Optimal manipulation of the dialysate temperature is therefore primary handles to obtain the improved patient outcomes. In this study, the effect of dialysate temperature (cool vs. warm dialysate) on toxin removal will be studied. In both the interventions, outcome measure will be patient hemodynamic response and amount of toxins removed. The spent dialysate will be collected to study the quantum of toxin removed.


Clinical Trial Description

Cool dialysate, by vasoconstriction, is simple maneuver to control and/or prevent incidence of intra-dialytic hypotension (IDH). During dialysis fluid is continuously removed. IDH occurs when plasma refilling rate is smaller than the set ultra-filtration rate. When plasma refiling rate is small, continuous fluid removal bring patient to the threshold state where patient does not have sufficient fluid in central compartment. This leads to the cascade of events, viz., low blood pressure, muscle cramps, dizziness, being first few manifestation. To minimize the occurrence of such events, clinicians often prescribe cool dialysate resulting in vasoconstriction, which ensures sufficient fluid volume in central body compartment so that continuous fluid loss does not impact patient hemodynamics severely.

It is important to note that vasoconstriction may also inhibit the toxin movement from remote peripheral compartments to central blood compartment, and thus less toxin will be removed. On the other hand warm dialysate leading to vasodilation will mobilize the toxins in remote peripheral compartments and increase the toxin influx in central blood compartment. Few researchers have investigate the effect of dialysate temperature on urea removal, but urea is not a true marker of toxin milieu. In this pilot clinical research, we will compare the effect of dialysate temperature on removal of both small and large sized uremic toxins. Our objective is not to study the effect of dialysate temperature on incidence of IDH, so we will recruit subjects who are stable on dialysis and have no prior history of IDH episodes. ;


Study Design

Allocation: Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Crossover Assignment, Masking: Single Blind (Subject), Primary Purpose: Supportive Care


Related Conditions & MeSH terms


NCT number NCT02064153
Study type Interventional
Source National University Hospital, Singapore
Contact
Status Completed
Phase N/A
Start date July 2013
Completion date January 2015

See also
  Status Clinical Trial Phase
Completed NCT04062994 - A Clinical Decision Support Trial to Reduce Intraoperative Hypotension
Active, not recruiting NCT02016599 - Effects of Transitional Circulation in ELBW Infants
Recruiting NCT05836610 - Hydrocortisone Therapy Optimization During Hypothermia Treatment in Asphyxiated Neonates Phase 4
Completed NCT03215797 - Phenylephrine or Norepinephrine for a Better Hemodynamic Stability Phase 3
Suspended NCT02315937 - Hemodynamic Assessment During Spinal Anesthesia Using Transthoracic Echocardiography' N/A
Completed NCT02907931 - Carotid Doppler Ultrasound for the Measurement of Intravascular Volume Status N/A
Recruiting NCT02532270 - Detecting Hypotension By Continuous Non-invasive Arterial Pressure Monitoring N/A
Completed NCT02437799 - Dicrotic Notch and Hypotension at Caesarean Under Spinal Anaesthesia N/A
Completed NCT02802683 - Hemodynamic Impact of Hyperbaric Versus Isobaric for Spinal Anesthesia During Cesarean Delivery Phase 4
Completed NCT01930227 - Transcutaneous Electrical Acupoint Stimulation(TEAS) for Hypotension After Spinal Anesthesia in Parturients N/A
Completed NCT02146898 - The Severity Of Hypotension Comparing Three Positions During Spinal Anesthesia For Cesarean Delivery N/A
Not yet recruiting NCT01941472 - Transcutaneous pO2, Transcutaneous pCO2 and Central Venous pO2 Variations to Predict Fluid Responsiveness N/A
Recruiting NCT01434251 - Treatment of Hypotension of Prematurity (TOHOP) N/A
Completed NCT01592669 - Passive Leg Raising Attenuates and Delays Tourniquet Deflation-induced Hypotension and Tachycardia N/A
Withdrawn NCT01183741 - Accuracy of Non-Invasive Blood Pressure Measurement in Adults Phase 3
Completed NCT00991627 - Different Approaches to Maternal Hypotension During Cesarean Section Phase 4
Withdrawn NCT00750516 - Lactic Acid Levels In Hypotensive Patients Without(Standard) and With Tourniquet
Completed NCT00115726 - Trial Assessing the Effect of Preoperative Furosemide on Intraoperative Blood Pressure Phase 4
Recruiting NCT05513066 - Management Arterial Hypotension During Planned Caesarean Section, Intravenous Ephedrine/Phenylephrine Mixture Versus Intravenous Baby Noradrenaline
Completed NCT04089644 - Manual vs Closed-loop Control of Mean Arterial Pressure N/A