View clinical trials related to Hypoglycemia Unawareness.
Filter by:The goal of this observational study is to assess clinical factors associated with the occurrence of impaired hypoglycemia awareness in adult patients with type 1 diabetes The main questions it aims to answer are: 1. Determination of the prevalence of impaired hypoglycemia awareness (IAH) in adult patients with type 1 diabetes in the Polish population. 2. Assessment of the clinical usefulness of commonly used standardized scales for the assessment of IAH. 3. Determination of the clinical factors associated with the occurrence of impaired hypoglycemia awareness in adult patients with type 1 diabetes. 4. Determination of the relationship between the occurrence of IAH and the diagnosis of cardiac autonomic neuropathy. 5. Determination of the relationship between impaired hypoglycemia awareness in adult patients with type 1 diabetes and the occurrence of cognitive impairment. Participants will: - fill the standard questionnaires regarding hypoglycemia awareness: Gold, Clarck, HypoA-Q. - have late complications of diabetes checked - have procedure of cardiac autonomic neuropathy assessment - have standard laboratory evaluation during hospitalization
This is a prospective randomized placebo-controlled double-blind crossover study determining the effect of dichloroacetate on brain glucose metabolism under clamped hypoglycemia in T1DM.
The purpose of this study is to look at feasibility (the likelihood) of continued use of the FreeStyle Libre 2 Continuous glucose monitor (CGM) when started at the time of hospital discharge in patients with poorly controlled diabetes and to look at the effects of CGM use on blood glucose control and quality of life. Additional information will be collected to determine the barriers to continuing CGM use after discharge. The investigators will also collect information to see how well blood glucose has been controlled after discharge while utilizing the CGM.
The objective of this study is to investigate if the addition of a 12-week program of home-based high intensity interval training to a standard educational program aiming at preventing hypoglycemia episodes will restore hypoglycemia awareness in people living with type 1 diabetes and impaired awareness of hypoglycemia to a further extent than a standard educational program alone. Participants will be randomized for 12 weeks to the standard educational program with or without high intensity interval training. The Gold method will be used to identify people with impaired awareness of hypoglycemia. The educational program will consist of two education sessions on avoidance of hypoglycemia, causes of hypoglycemia, treatment (e.g. glucagon) of hypoglycemia, how to better recognize hypoglycemia symptoms, understand how to use a CGM/Flash-GM and understand CGM/Flash-GM reports to adjust insulin doses. Participants randomized to the training program will be asked to train three times per week for 12 weeks following the home-based program that will be provided to them. Participants will be asked to perform at least 2 training sessions per week (ideally all 3 sessions) with the exercise specialist on a virtual platform.
Almost all people who have had type 1 diabetes for 5 years have a defect in secretion of the hormone Glucagon. This hormone is involved in the body's response to low blood glucose (hypoglycaemia). It works by releasing glucose stores from the liver to bring the blood glucose back to normal. This defect therefore increases the risk of severe hypoglycaemia. The reason for this Glucagon defect in people with Type 1 diabetes is currently unknown. This study aims to look at the Glucagon response to hypoglycaemia in 24 people with type 1 diabetes to ascertain whether tight blood glucose control over a period of time improves this response. The investigators aim to achieve good blood glucose control using new generation Automated Insulin Delivery systems (AIDs). This system is made of: an insulin pump, a continuous glucose monitor (CGM) and an algorithm that allows adjustment of insulin delivery based on the blood glucose readings from the CGM. This is the most up to date technology that there is in the management of type 1 diabetes. However, people using this technology often still have problems with high blood glucose after eating. To ensure a very good blood glucose control participants will also follow a low carbohydrate diet to prevent this blood glucose rise after meals. The Glucagon response to low blood glucose will be measured at zero and eight months using the hyperinsulinaemic hypoglycaemic clamp technique.
Use of CGM to determine diagnosis in possible spontaneous or reactive hypoglycaemia. Use of CGM to aid treatment optimisation in spontaneous or reactive hypoglycaemia
Hypoglycaemia or low blood glucose, and its fear are major barriers to achieving optimal glucose control. New technology, such as continuous glucose monitors (CGM), help to better identify hypoglycaemia and develop strategies to avoid it. These devices measure glucose in the skin, rather than in the blood, and provide information not only on how low glucose is, but also for how long. Recent studies showed that over half of episodes of low glucose with these systems are not recognised by people with diabetes, and even people without diabetes have sensor values that are below the current thresholds for hypoglycaemia [ low blood glucose] that we measure with traditional monitors. In this study, the investigators will evaluate the impact of symptomatic as well as asymptomatic episodes of low sensor glucose on a variety of clinical, patient-related and health economic outcomes such as mood, quality of sleep and productivity. The investigators will test different levels and durations of low sensor glucose to identify the one that best matches episodes that are symptomatic to best define hypoglycaemia using these systems. The investigators will also look at factors that influence this such as sleep or activity as well as diabetes management behaviours (such as insulin dosing, carb counting, etc). At the end of this study, the investigators will be able to provide a better definition of clinically relevant low sensor glucose readings that will help inform clinical as well as academic interpretation of CGM data.
Metoclopramide is a drug approved by the FDA for gastroesophageal reflux and to relieve symptoms in adults with acute and recurrent diabetic gastroparesis. The objective of this study is to determine whether metoclopramide can improve hypoglycemia awareness and decrease the incidence of hypoglycemia in type 1 diabetes patients with hypoglycemia unawareness.
This study aims to assess the impact of real-time continuous glucose monitoring on the frequency, duration, awareness and severity of hypoglycaemia in people with type 1 diabetes and a recent history of severe hypoglycaemia, compared to usual care.
It is thought that altered brain lactate handling is involved in the development of impaired awareness of hypoglycemia (IAH), i.e. the inability to timely detect hypoglycemia in people with type 1 diabetes (T1DM). Infusion of lactate diminishes symptomatic and hormonal responses to hypoglycemia in patients with normal awareness of hypoglycemia (NAH), resembling the situation of patients with IAH. It is unknown whether this attenuating effect is due to brain lactate oxidation or the result of lactate-induced alterations of global and regional cerebral blood flow (CBF). Normally, hypoglycemia causes a redistribution of CBF towards the thalamus, from where the sympathetic response to hypoglycemia is coordinated, but in IAH this effect is absent and global CBF is increased. We hypothesize that lactate infusion in patients with NAH will result in blunting of thalamic activation and/or enhanced global CBF. If so, these results may help delineating the pathogenesis of IAH which eventually creates new avenues to protect against the morbidity associated with hypoglycemia and IAH. Study design: Single-blind placebo controlled, randomized cross-over intervention study Study population: T1DM patients with NAH (n=10) Intervention: On two separate occasions, patients with T1DM and NAH will undergo a hyperinsulinemic euglycemic-hypoglycemic glucose clamp with or without the infusion of exogenous lactate. ASL-MRI will be applied to measure global and regional changes in CBF. Main study parameters/endpoints: The change in regional thalamic CBF in response to intravenous lactate infusion compared to placebo, during hypoglycemia