Clinical Trials Logo

Clinical Trial Summary

Rhaeos, Inc. is initially targeting hydrocephalus, a life threatening condition caused by an abnormal accumulation of cerebrospinal fluid (CSF). Implantable shunts, the gold standard treatment, often fail, leading to multiple trips to the emergency room and repeat surgeries. There is no technology available today that can easily assess CSF flow in shunts wirelessly, bedside, and without capital equipment until now. FlowSense, is a wireless, noninvasive thermal flow sensor that can be mounted on a patient's neck overlying the shunt to detect the presence and magnitude of CSF. Similar in size to a bandage, it is composed of soft, silicone with no hard edges. Data is wirelessly transmitted to a custom designed mobile app. With FlowSense, monitoring of shunt function can occur in clinics, in-patient settings, and emergency departments, thereby reducing unnecessary imaging, hospital length of stay, and readmission costs.


Clinical Trial Description

Hydrocephalus is caused by excess cerebrospinal fluid in the brain that can lead to lethargy, seizures, and comas. There is no cure for it nor is there any way to prevent it from happening. Affecting 1M Americans today, treatment costs the healthcare system >$2B per year. Neurosurgically implanted shunts, the standard treatment, often fail. Patients with failed shunts show nonspecific symptoms, including headaches, dizziness and nausea. CTs and MRIs are used for diagnosis, but are inconclusive, expensive, and often lead to unnecessary admissions. Rhaeos, Inc. is a VC backed, clinical stage medical device company developing FlowSense, a patent protected platform technology and a noninvasive wireless, wearable skin patch that can assess and monitor fluid flow subdermally throughout the body. The company is initially targeting hydrocephalus, a life threatening condition caused by an abnormal accumulation of cerebrospinal fluid (CSF). Implantable shunts, the gold standard treatment, often fail, leading to multiple trips to the emergency room and repeat surgeries. There is no technology available today that can easily assess CSF flow in shunts wirelessly, bedside, and without capital equipment until now. FlowSense, is a wireless, noninvasive thermal flow sensor that can be mounted on a patient¿s neck overlying the shunt to detect the presence and magnitude of CSF. Similar in size to a bandage, it is composed of soft, silicone with no hard edges. Data is wirelessly transmitted to a custom designed mobile app. With FlowSense, monitoring of shunt function can occur in clinics, in-patient settings, and emergency departments, thereby reducing unnecessary imaging, hospital length of stay, and readmission costs. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05546996
Study type Interventional
Source Baylor College of Medicine
Contact Samuel McClugage, MD
Phone 8328223950
Email mcclugag@bcm.edu
Status Recruiting
Phase N/A
Start date July 11, 2023
Completion date December 2025

See also
  Status Clinical Trial Phase
Recruiting NCT06040697 - Formative Usability Assessment of Wireless Thermal Anisotropy Devices
Terminated NCT02408757 - Sonographic Monitoring of Weaning of Cerebrospinal Fluid Drainages
Terminated NCT01863381 - Comparison of Continuous Non-Invasive and Invasive Intracranial Pressure Measurement N/A
Completed NCT00652470 - A Study Comparing Two Treatments for Infants With Hydrocephalus Phase 2
Completed NCT00196196 - A Precision and Accuracy Study of the Codman Valve Position Verification (VPV) System. Phase 3
Terminated NCT05501002 - Pilot Study to Evaluate the CereVasc® eShunt® System in the Treatment of Communicating Hydrocephalus N/A
Active, not recruiting NCT05068128 - Combined Flow and Pressure Study of Craniospinal Dynamic
Completed NCT04496414 - Bactiseal Catheter Safety Registry in China
Terminated NCT02900222 - Study of Choroid Plexus Cauterization in Patients With Hydrocephalus N/A
Recruiting NCT04099823 - MR Evaluation of Cerebrospinal Fluid (CSF) Dynamics N/A
Unknown status NCT02775136 - An Evaluation of a Non-invasive Brain Monitor N/A
Completed NCT00692744 - Quality of Life in Elderly After Aneurysmal Subarachnoid Hemorrhage (SAH) N/A
Recruiting NCT04758611 - The ETCHES I Study (Endovascular Treatment of Communicating Hydrocephalus With an Endovascular Shunt) N/A
Completed NCT03595033 - Hydrocephalus iPad-App Based Intervention Study N/A
Completed NCT04207229 - CERTAS Programmable Valve Registry
Terminated NCT01973764 - Intraventricular Drain Insertion: Comparison of Ultrasound-guided and Landmark-based Puncture of the Ventricular System N/A
Completed NCT01976559 - Comparison of Continuous Noninvasive and Invasive Intracranial Pressure Measurement--Celda Infusion Subprotocol N/A
Completed NCT02381977 - Prevalence of Acute Critical Neurological Disease in Children: a Global Epidemiological Assessment N/A
Recruiting NCT06086561 - Longitudinal Measurements of Flow in Cerebrospinal Fluid Shunts With a Wireless Thermal Anisotropy Measurement Device N/A
Recruiting NCT05910944 - European Study of Prodromal iNPH