Clinical Trials Logo

Hydrocephalus Acquired clinical trials

View clinical trials related to Hydrocephalus Acquired.

Filter by:
  • None
  • Page 1

NCT ID: NCT04785560 Active, not recruiting - Clinical trials for Hydrocephalus, Normal Pressure

Volumetrics and Proteomics in Shunted Normal Pressure Hydrocephalus

LiNPH
Start date: March 8, 2021
Phase: N/A
Study type: Interventional

Idiopathic normal pressure hydrocephalus (=iNPH) is a condition with disturbed circulation of cerebrospinal fluid (=CSF) causing symptoms such as balance and gait disorders, urinary incontinence and cognitive impairment in patients with cerebral ventricular dilation. The exact incidence is unknown but has been estimated at about 8.9% of the population over the age of 80 and the incidence is estimated to increase with an aging population. The symptoms can be temporarily improved by draining cerebrospinal fluid and so-called shunting (surgery with diversion of cerebrospinal fluid from the brain to the abdominal cavity). The symptoms and pathophysiology of iNPH are poorly described as well as the protein distribution in cerebrospinal fluid (proteomics) of the disease. There is also a need for improved diagnostical and prognostical tools that can guide in patient selection for surgery. The radiological tools in evaluating the disease and it´s progression need to be improved. There is a shunt valve (Codman Certas Plus) used since 2015 that is widely used in clinical use and is well studied in research laboratories but little in clinical studies. The project aims to, before and after surgery, on patients with iNPH who will undergo investigation and shunting with Certas Plus at our department and in comparison with healthy controls: 1. Apply and evaluate a novel method to determine the volume of circulating CSF (volumetry). 2. Study the correlation between changes in volumetry and clinical outcome 3. Study NPH patients' distribution of proteins in cerebrospinal fluid and their change over time after shunting. 4. Evaluate the efficacy and functions of the Certas Plus valve. In this way, the investigators hope to find increased knowledge about the NPH disease and its pathophysiology as well as useful instruments that can both predict the probability for a patient to be improved by a shunt operation and determine if a shunt has stopped working and thus be able to avoid unnecessary risky operations.