View clinical trials related to Hurler Syndrome.
Filter by:Providing access of BPX-501 gene modified T cells and rimiducid to pediatric patients who do not meet the eligibility criteria of the BP-U-004 study.
RGX-111 is a gene therapy which is intended to deliver a functional copy of the α-L-iduronidase (IDUA) gene to the central nervous system. This is a safety and dose ranging study to determine whether RGX-111 is safe and tolerated by patients with MPS I.
In this study, the investigators test 2 dose levels of thiotepa (5 mg/kg and 10 mg/kg) added to the backbone of targeted reduced dose IV busulfan, fludarabine and rabbit anti-thymocyte globulin (rATG) to determine the minimum effective dose required for reliable engraftment for subjects undergoing hematopoietic stem cell transplantation for non-malignant disease.
This single-institution, phase II study is designed to test the ability to achieve donor hematopoietic engraftment while maintaining low rates of transplant-related mortality (TRM) using busulfan- and fludarabine-based conditioning regimens with busulfan therapeutic drug monitoring (TDM) for patients with various inherited metabolic disorders (IMD) and severe osteopetrosis (OP).
This is a single arm, phase I study to assess the tolerability of abatacept when combined with cyclosporine and mycophenolate mofetil as graft versus host disease prophylaxis in children undergoing unrelated hematopoietic stem cell transplant for serious non-malignant diseases as well as to assess the immunological effects of abatacept. Participants will be followed for 2 years.
Hypothesis #1: Factor analysis of the revised Sanfilippo Behavior Rating Scale (SBRS) will identify a group of externalizing behaviors and a group of Klüver-Bucy syndrome-like behaviors as two different factors that are at least partially independent. Hypothesis #2a: Children with MPS III will show more hyperlocomotion, fearlessness, asociality and noncompliance than children of similar cognitive ability with MPS I. Hypothesis #2b: These behaviors will become more frequent and/or intensify over time, consistent with the Cleary and Wraith (1993) model. Quantifying them will provide a more empirical framework for staging disease progression. Hypothesis #3: Brain volumetric analysis and diffusion-tensor imaging will reveal abnormalities of frontal and temporal lobe structures that will correlate with externalizing and Klüver-Bucy syndrome-like behaviors, respectively. Hypothesis #4. Loss of cognitive and language function as measures of neurologic decline will directly precede or co-vary with behavioral decline. The primary objective of this study is to identify the behavioral phenotype and its neural basis in MPS III (Sanfilippo syndrome). Is the behavioral phenotype similar to that of Klüver-Bucy syndrome, and is there evidence for amygdala abnormality? The secondary objective of this research study is to develop easily administered, sensitive and specific neurobehavioral and neuroimaging markers to characterize the behavioral phenotype(s) of MPS III; to track their progression; and to delineate their neural substrates. Such markers are critical for identifying the stage of disease for each patient, and to measure treatment outcome. Although we know that severe cognitive decline is one essential characteristic of MPS III, the other highly salient characteristic is a range of abnormal and disruptive behaviors that can include, but go well beyond, childhood noncompliance and oppositionality. These behaviors set Sanfilippo syndrome apart from the other MPS disorders. They cause major disruption in the child's familial, school, and community environments. Delineating these behavioral abnormalities will help in better understanding the neurological disease.
This is a standard of care treatment guideline for patients with the diagnosis of mucopolysaccharidosis type IH (MPS I, Hurler syndrome) who are being considered as candidates for first hematopoietic stem cell transplantation (HSCT) according to a University of Minnesota myeloablative HSCT protocol.
This is a single center pilot study in which Laronidase will be given weekly for two years in patients with Hurler syndrome, also known as mucopolysaccharide IH (MPS I, Hurler syndrome), that have previously been treated with an allogeneic transplant.
Rationale: Chemotherapy administration before a donor stem cell transplant is necessary to stop the patient's immune system from rejecting the donor's stem cells. When healthy stem cells from a donor are infused into the patient, the donor white blood cells can provide the missing enzyme that causes the metabolic disease. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving a monoclonal antibody, alemtuzumab, before transplant and cyclosporine and mycophenolate mofetil before and after transplant may stop this from happening. This may be an effective treatment for inherited metabolic disorders. Purpose: The design of this study is to achieve donor cell engraftment in patients with standard-risk inherited metabolic diseases with limited peri-transplant morbidity and mortality. This will be achieved through the administration of the chemotherapy regimen described. The intention is to follow transplanted patient for years after transplant monitoring them for complications of their disease and assisting families with a multifaceted interdisciplinary approach.
This protocol will examine whether the enzyme alpha-L-iduronidase (Laronidase), delivered into the spinal fluid of patients with Hurler syndrome at intervals before and after bone marrow transplant, is a safe and effective approach to slow the neurologic degeneration seen in Hurler patients undergoing transplantation.